分析 由题意得,函数是增函数,构造出方程组,利用方程组的解都大于0,求出t的取值范围.
解答 解:∵函数f(x)=log2(2x+t)为“倍缩函数”,
且满足存在[a,b]⊆D,使f(x)在[a,b]上的值域是[$\frac{a}{2}$,$\frac{b}{2}$],
∴f(x)在[a,b]上是增函数;
∴$\left\{\begin{array}{l}{lo{g}_{2}({2}^{a}+t)=\frac{a}{2}}\\{lo{g}_{2}({2}^{b}+t)=\frac{b}{2}}\end{array}\right.$,
即$\left\{\begin{array}{l}{{2}^{a}+t={2}^{\frac{a}{2}}}\\{{2}^{b}+t={2}^{\frac{b}{2}}}\end{array}\right.$,
∴方程${2}^{x}-{2}^{\frac{x}{2}}$+t=0有两个不等的实根,且两根都大于0;
∴$\left\{\begin{array}{l}{(-1)^{2}-4t>0}\\{t>0}\end{array}\right.$,
解得:0<t<$\frac{1}{4}$,
∴满足条件t的范围是(0,$\frac{1}{4}$).
故答案为:(0,$\frac{1}{4}$).
点评 本题考察了函数的值域问题,解题时构造函数,渗透转化思想,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com