精英家教网 > 高中数学 > 题目详情

【题目】在棱长为2的正方体中,点是正方体棱上一点,.

①若,则满足条件的点的个数为______

②若满足的点的个数为6,则的取值范围是______.

【答案】4

【解析】

1)由题意可得点是以为焦距,以为长半轴的椭圆与正方体与棱的交点,可求解;

2)利用三角形两边之和大于第三边,以及点的个数为6个时,短半轴范围,即可求解.

1)正方体的棱长为

是以为焦距,以为长半轴的椭圆,

在正方体的棱上,应是椭圆与正方体与棱的交点,

结合正方体的性质可得,满足条件的点为

以及棱各有一点满足条件,

故满足条件的点的个数为

2

当椭圆短半轴时,椭圆与棱,

各有一个交点,与其它棱无交点,满足题意,

时,由(1)得不合题意.

时,根据正方体的性质,

至多只有4个点在棱上,不合题意;

时,椭圆与棱

各有一个交点,满足题意,

,椭圆至多与正方体的棱有4个交点,不合题意.

综上 .

故答案为:14;(2

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)

如图,已知四棱锥的底面为菱形,且 .

I)求证:平面 平面

II)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂有甲,乙两个车间生产同一种产品,甲车间有工人人,乙车间有工人人,为比较两个车间工人的生产效率,采用分层抽样的方法抽取工人,甲车间抽取的工人记作第一组,乙车间抽取的工人记作第二组,并对他们中每位工人生产完成的一件产品的事件(单位:)进行统计,按照进行分组,得到下列统计图.

分别估算两个车间工人中,生产一件产品时间少于的人数;

分别估计两个车间工人生产一件产品时间的平均值,并推测车哪个车间工人的生产效率更高?

从第一组生产时间少于的工人中随机抽取人,求抽取人中,至少人生产时间少于的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直四棱柱中,

1)求证:平面

2)现将与四棱柱形状和大小完全相同的两个四棱柱拼成一个新的四棱柱,规定:若拼成的新四棱柱形状和大小完全相同,则视为同一种拼接方案,问共有几种不同的拼接方案?在这些拼接成的新四棱柱中,记其中最小的表面积为,写出的解析式;(直接写出答案,不必说明理由)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆过定点P(4,0),且在y轴上截得的弦MN的长为8.

(1)求动圆圆心C的轨迹方程;

(2)过点(2,0)的直线l与动圆圆心C的轨迹交于A,B两点,求证:是一个定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中平面平面.

(Ⅰ)证明:

(Ⅱ)若点E中点,,求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】苹果可按果径(最大横切面直径,单位:.)分为五个等级:时为1级,时为2级,时为3级,时为4级,时为5级.不同果径的苹果,按照不同外观指标又分为特级果、一级果、二级果.某果园采摘苹果10000个,果径均在内,从中随机抽取2000个苹果进行统计分析,得到如图1所示的频率分布直方图,图2为抽取的样本中果径在80以上的苹果的等级分布统计图.

(1)假设服从正态分布,其中的近似值为果径的样本平均数(同一组数据用该区间的中点值代替),,试估计采摘的10000个苹果中,果径位于区间的苹果个数;

(2)已知该果园今年共收获果径在80以上的苹果,且售价为特级果12元,一级果10元,二级果9元.设该果园售出这苹果的收入为以频率估计概率,求的数学期望.

附:若随机变量服从正态分布,则

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆A为圆O1上任意一点,点D在线段上.,已知

(1)求点D的轨迹方程H

(2)若直线与方程H所表示的图像交于EF两点,是椭圆上任意一点.若OG平分弦EF,且,试判断四边形OEGF形状并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着电子商务的兴起,网上销售为人们带来了诸多便利.商务部预计,到2020年,网络销售占比将达到.网购的发展同时促进了快递业的发展,现有甲、乙两个快递公司,每位打包工平均每天打包数量在范围内.为扩展业务,现招聘打包工.两公司提供的工资方案如下:甲公司打包工每天基础工资64元,且每天每打包一件快递另赚1元;乙公司打包工无基础工资,如果每天打包量不超过240件,则每打包一件快递可赚1.2元;如果当天打包量超过240件,则超出的部分每件赚1.8元.

下图为随机抽取的打包工每天需要打包数量的频率分布直方图,以打包量的频率作为各打包量发生的概率.(同一组中的数据用该组区间的中间值作代表).

(1)(i)以每天打包量为自变量,写出乙公司打包工的收入函数

(ii)若打包工小李是乙公司员工,求小李一天收入不低于324元的概率;

(2)某打包工在甲、乙两个快递公司中选择一个公司工作,如果仅从日平均收入的角度考虑,请利用所学的统计学知识为该打包工作出选择,并说明理由.

查看答案和解析>>

同步练习册答案