精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆)的右顶点为.左、右焦点分别为,过点且垂直于轴的直线交椭圆于点在第象限),直线的斜率为,与轴交于点

1)求椭圆的标准方程;

2)过点的直线与椭圆交于两点(不与重合),若,求直线的方程.

【答案】12

【解析】

1)根据条件建立方程组进行求解;

2)先验证设直线的斜率不存在时是否符合题意,再设直线的斜率为,联立方程组,根与系数的关系 ,结合,可将(或的坐标用表示,再利用点在椭圆上,求得,从而求得的方程.

解:(1,由题意得

解得

因此椭圆的标准方程为

2)由,即

若直线的斜率不存在,则,不满足

因此直线的斜率存在,设为

,得

恒成立

,则

,从而

代入椭圆方程,得

解得,即

因此直线的方程为,即

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,其中kR.

1)当时,求函数的单调区间;

2)当k∈[12]时,求函数在[0k]上的最大值的表达式,并求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,给出以下四个命题:①为偶函数;②为偶函数;③的最小值为0;④有两个零点.其中真命题的是( ).

A.②④B.①③C.①③④D.①④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名.为了研究工人的日平均生产量是否与年龄有关,现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,再将两组工人的日平均生产件数分成5组: ,分别加以统计,得到如图所示的频率分布直方图.

(1)根据“25周岁以上组”的频率分布直方图,求25周岁以上组工人日平均生产件数的中位数的估计值(四舍五入保留整数);

(2)从样本中日平均生产件数不足60件的工人中随机抽取2人,求至少抽到一名“25周岁以下组”工人的概率;

(3)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成列联表,并判断是否有 的把握认为“生产能手与工人所在年龄组有关”?

生产能手

非生产能手

合计

25周岁以上组

25周岁以下组

合计

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多边形中(图1).四边形为长方形,为正三角形,,现以为折痕将折起,使点在平面内的射影恰好是的中点(图2).

1)证明:平面

2)若点在线段上,且,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】农历五月初五是端午节,民间有吃粽子的习惯,粽子又称粽籺,俗称粽子,古称角黍,是端午节大家都会品尝的食品,传说这是为了纪念战国时期楚国大臣、爱国主义诗人屈原.如图,平行四边形形状的纸片是由六个边长为1的正三角形构成的,将它沿虚线折起来,可以得到如图所示粽子形状的六面体,则该六面体的体积为____;若该六面体内有一球,则该球体积的最大值为____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.其中表示直线,β表示平面,给出如下5个命题:

①若//,则//

②若,则

不垂直,则不可能成立;

④若,则

,则

其中真命题的个数是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,直线的参数方程为为参数),在以坐标原点为极点,以轴正半轴为极轴的极坐标中,圆的方程为

(1)写出直线的普通方程和圆的直角坐标方程;

(2)若点的坐标为,圆与直线交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若过点的直线与曲线相切,求直线的斜率的值;

2)设,若,求实数的取值范围.

查看答案和解析>>

同步练习册答案