精英家教网 > 高中数学 > 题目详情

【题目】如图所示,我市某居民小区拟在边长为1百米的正方形地块上划出一个三角形地块种植草坪,两个三角形地块种植花卉,一个三角形地块设计成水景喷泉,四周铺设小路供居民平时休闲散步,点在边上,点在边上,记

1)当时,求花卉种植面积关于的函数表达式,并求的最小值;

2)考虑到小区道路的整体规划,要求,请探究是否为定值,若是,求出此定值,若不是,请说明理由.

【答案】1];最小值为 2是定值,且

【解析】

1)根据三角函数定义及,表示出,进而求得.即可用表示出

2)设,利用正切的和角公式求得,由求得的等量关系.进而求得的值,即可求得的值.

1)∵边长为1百米的正方形中,

,其中

∴当时,

时,S取得最小值为

2)设

中,,在中,

,整理可得

是定值,且

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】是函数的两个极值点,其中.

1)求的取值范围;

2)若为自然对数的底数),的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,左、右焦点分别是,椭圆上短轴的一个端点与两个焦点构成的三角形的面积为

(1)求椭圆的方程;

(2)过作垂直于轴的直线交椭圆两点(点在第二象限),是椭圆上位于直线两侧的动点,若,求证:直线的斜率为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市推行“共享汽车”服务,租用汽车按行驶里程加用车时间收费,标准是“1元/公里+0.2元/分钟”,刚在该市参加工作的小刘拟租用“共享汽车“上下班.单位同事老李告诉他:“上下班往返总路程虽然只有10公里,但偶尔上下班总共也需要用时大约1小时”,并将自己近50天往返开车的花费时间情况统计如下

时间(分钟)

[1525

[2535

[3545

[4555

[5565

次数ξ

8

18

14

8

2

将老李统计的各时间段频率视为相应概率,假定往返的路况不变,而且每次路上开车花费时间视为用车时间.

1)试估计小刘每天平均支付的租车费用(每个时间段以中点时间计算);

2)小刘认为只要上下班开车总用时不超过45分钟,租用“共享汽车”为他该日的“最优选择”,小刘拟租用该车上下班2天,设其中有ξ天为“最优选择”,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆)的一个焦点与抛物线的焦点重合,且离心率为.

1)求椭圆的标准方程;

2)过焦点的直线与抛物线交于两点,与椭圆交于两点,满足,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为自然对数的底数.

)设是函数的导函数,求函数在区间上的最小值;

)若,函数在区间内有零点,求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=cos),把函数fx)的图象向左平移个单位得函数gx)的图象,则下面结论正确的是(

A.函数gx)是偶函数

B.函数gx)的最小正周期是

C.函数gx)在区间3π]上是增区数

D.函数gx)的图象关于直线xπ对称

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,其中为实数.

1)若上是单调减函数,且上有最小值,求的取值范围;

2)若上是单调增函数,试求的零点个数,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若椭圆上有一动点到椭圆的两焦点的距离之和等于到直线的最大距离为.

(Ⅰ)求椭圆的方程;

(Ⅱ)若过点的直线与椭圆交于不同两点为坐标原点)且,求实数的取值范围.

查看答案和解析>>

同步练习册答案