【题目】一个几何体的三视图如图所示,则这个几何体的表面积为( )
A.24+8 +8
B.20+8 +4 ??
C.20+8 +4
D.20+4 +4
科目:高中数学 来源: 题型:
【题目】设椭圆E: + =1(a>0)的焦点在x轴上.
(Ⅰ)若椭圆E的离心率e= a,求椭圆E的方程;
(Ⅱ)设F1、F2分别是椭圆E的左、右焦点,P为直线x+y=2 与椭圆E的一个公共点,直线F2P交y轴于点Q,连结F1P,问当a变化时, 与 的夹角是否为定值,若是定值,求出该定值,若不是定值,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将函数f(x)=cos2x图象向左平移φ(0<φ< )个单位后得到函数g(x)的图象,若函数g(x)在区间[﹣ , ]上单调递减,且函数g(x)的最大负零点在区间(﹣ ,0)上,则φ的取值范围是( )
A.[ , ]
B.[ , )
C.( , ]
D.[ , )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆F1:(x+1)2+y2=16,定点F2(1,0),A是圆F1上的一动点,线段F2A的垂直平分线交半径F1A于P点. (Ⅰ)求P点的轨迹C的方程;
(Ⅱ)四边形EFGH的四个顶点都在曲线C上,且对角线EG,FH过原点O,若kEGkFH=﹣ ,求证:四边形EFGH的面积为定值,并求出此定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知图1中,四边形 ABCD是等腰梯形,AB∥CD,EF∥CD,DM⊥AB于M、交EF于点N,DN=3 ,MN= ,现将梯形ABCD沿EF折起,记折起后C、D为C'、D'且使D'M=2 ,如图2示.
(Ⅰ)证明:D'M⊥平面ABFE;,
(Ⅱ)若图1中,∠A=60°,求点M到平面AED'的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设已知抛物线C:y2=2px的焦点为F1 , 过F1的直线l与曲线C相交于M,N两点.
(1)若直线l的倾斜角为60°,且|MN|= ,求p;
(2)若p=2,椭圆 +y2=1上两个点P,Q,满足:P,Q,F1三点共线且PQ⊥MN,求四边形PMQN的面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,由半圆x2+y2=r2(y≤0,r>0)和部分抛物线y=a(x2﹣1)(y≥0,a>0)合成的曲线C称为“羽毛球形线”,曲线C与x轴有A、B两个焦点,且经过点(2.3).
(1)求a、r的值;
(2)设N(0,2),M为曲线C上的动点,求|MN|的最小值;
(3)过A且斜率为k的直线l与“羽毛球形线”相交于P,A,Q三点,问是否存在实数k,使得∠QBA=∠PBA?若存在,求出k的值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com