精英家教网 > 高中数学 > 题目详情

【题目】某校为了解高一期末数学考试的情况,从高一的所有学生数学试卷中随机抽取n份试卷进行成绩分析,得到数学成绩频率分布直方图(如图所示),其中成绩在[50,60)的学生人数为6.
(Ⅰ)求直方图中x的值;
(Ⅱ)试估计所抽取的数学成绩的平均数;
(Ⅲ)试根据样本估计“该校高一学生期末数学考试成绩≥70”的概率.

【答案】解:(Ⅰ)由频率分布直方图的各高之和为组距分之一,
所以(0.012+0.016+0.018+0.024+x)×10=1,
解得x=0.03;
(Ⅱ)根据频率分布直方图中的数据,
得该次数学考试的平均分为
=55×0.012×10+65×0.018×10
+75×0.03×10+85×0.024×10
+95×0.016×10=76.4;
(Ⅲ)根据题意可得:P=1﹣(0.012+0.018)×10=0.7
故“该校高一学生期末数学考试成绩≥70”的概率为0.7.
【解析】(Ⅰ)由频率分布直方图的高之和为组距分之一,即可得到结论;
(Ⅱ)根据频率分布直方图中的数据,求出数据的平均数即可;
(Ⅲ)右面三个举行的面积即为所求.
【考点精析】掌握频率分布直方图是解答本题的根本,需要知道频率分布表和频率分布直方图,是对相同数据的两种不同表达方式.用紧凑的表格改变数据的排列方式和构成形式,可展示数据的分布情况.通过作图既可以从数据中提取信息,又可以利用图形传递信息.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图是2008年北京奥运会上,七位评委为某奥运项目打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数为 ;方差为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校研究性学习小组对该校高三学生视力情况进行调查,在高三的全体名学生中随机抽取了名学生的体检表,并得到如图的频率分布直方图.

年级名次

是否近视

近视

不近视

(1)若直方图中后四组的频数成等差数列,试估计全年级视力在以下的人数;

(2)学习小组成员发现,学习成绩突出的学生,近视的比较多,为了研究学生的视力与学习成绩是否有关系,对年级名次在名和名的学生进行了调查,得到右表中数据,根据表中的数据,能否在犯错的概率不超过的前提下认为视力与学习成绩有关系?

(3)在(Ⅱ)中调查的名学生中,按照分层抽样在不近视的学生中抽取了人,进一步调查他们良好的护眼习惯,并且在这人中任取人,记名次在的学生人数为,求的分布列和数学期望.

7.879

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】小明跟父母、爷爷奶奶一同参加《中国诗词大会》的现场录制,5人坐成一排.若小明的父母至少有一人与他相邻,则不同坐法的总数为

A. 60 B. 72 C. 84 D. 96

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正三棱锥P﹣ABC中,CM=2PM,CN=2NB,对于以下结论:
①二面角B﹣PA﹣C大小的取值范围是( , π);
②若MN⊥AM,则PC与平面PAB所成角的大小为
③过点M与异面直线PA和BC都成的直线有3条;
④若二面角B﹣PA﹣C大小为 , 则过点N与平面PAC和平面PAB都成的直线有3条.
正确的序号是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=﹣x3+ax2﹣x﹣1在(﹣∞,+∞)上是单调函数,则实数a的取值范围是(  )
A.[﹣]
B.(﹣
C.(﹣∞,﹣)∪( , +∞)
D.(﹣∞,﹣)∩( , +∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三国时期赵爽在《勾股方圆图注》中对勾股定理的证明可用现代数学表述为如图所示,我们教材中利用该图作为“( )”的几何解释.

A.如果a>b,b>c,那么a>c
B.如果a>b>0,那么a2>b2
C.对任意实数a和b,有a2+b2≥2ab,当且仅当a=b时等号成立
D.如果a>b,c>0那么ac>bc

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆: , 左右焦点分别为F1 , F2 , 过F1的直线l交椭圆于A,B两点,若|BF2|+|AF2|的最大值为5,则b的值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点(2,5)和(8,3)是函数y=﹣k|x﹣a|+b与y=k|x﹣c|+d的图象仅有的两个交点,那么a+b+c+d的值为

查看答案和解析>>

同步练习册答案