【题目】已知函数.
(Ⅰ)若是的一个极值点,求函数表达式, 并求出的单调区间;
(Ⅱ)若,证明当时,.
科目:高中数学 来源: 题型:
【题目】某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族中的成员仅以自驾或公交方式通勤.分析显示:当中()的成员自驾时,自驾群体的人均通勤时间为(单位:分钟),而公交群体的人均通勤时间不受影响,恒为分钟,试根据上述分析结果回答下列问题:
(1)当在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?
(2)求该地上班族的人均通勤时间的表达式;讨论的单调性,并说明其实际意义.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四边形ABCD为矩形,沿AB将△ADC翻折成.设二面角的平面角为,直线与直线BC所成角为,直线与平面ABC所成角为,当为锐角时,有
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义域为的函数是奇函数,为指数函数且的图象过点.
(1)求实数n的值并写出的表达式;
(2)若对任意的,不等式恒成立,求实数t的范围;
(3)若方程恰有4个互异的实数根,求实数a的范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以下利用斜二测画法得到的结论,其中正确的是( )
A.相等的角在直观图中仍相等B.相等的线段在直观图中仍相等
C.平行四边形的直观图是平行四边形D.菱形的直观图是菱形
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将所有平面向量组成的集合记作, 是从到的映射, 记作或, 其中都是实数. 定义映射的模为: 在的条件下的最大值, 记做. 若存在非零向量, 及实数使得, 则称为的一个特征值.
(Ⅰ)若, 求;
(Ⅱ)如果, 计算的特征值, 并求相应的;
(Ⅲ)试找出一个映射, 满足以下两个条件: ①有唯一的特征值, ②. (不需证明)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com