精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

Ⅰ)若的一个极值点,求函数表达式, 并求出的单调区间;

Ⅱ)若,证明当时,

【答案】(1),单调递增区间是,递减区间是(2)见解析

【解析】

(1)由题可得求出。再利用的正负求单调区间。

(2)把不等式证明问题转化成函数的最值处理,判断好单调性,从而求出最小值。

解:的定义域为

由题设知,,所以

经检验满足已知条件,

从而

时,;当时,

所以单调递增区间是,递减区间是

Ⅱ)设

⑴当时,

,即

⑵当时,

在区间上单调递减

,即

综上得, 时,成立.

Ⅱ)解法二:⑴若,则

⑵若,则

时,

在区间上单调递减

,则

综上得, 时,成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】曲线y=1+与直线y=k(x-2)+4有两个交点,则实数k的取值范围是( )

A. (,+∞)B. (]C. (0,)D. (]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族中的成员仅以自驾或公交方式通勤.分析显示:当)的成员自驾时,自驾群体的人均通勤时间为(单位:分钟),而公交群体的人均通勤时间不受影响,恒为分钟,试根据上述分析结果回答下列问题:

(1)当在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?

(2)求该地上班族的人均通勤时间的表达式;讨论的单调性,并说明其实际意义.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD为矩形,沿AB将△ADC翻折成.设二面角的平面角为,直线与直线BC所成角为,直线与平面ABC所成角为,当为锐角时,有

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)当时,求函数的单调区间;

(Ⅱ)求证:直线是曲线的切线;

(Ⅲ)写出的一个值,使得函数有三个不同零点(只需直接写出数值)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为的函数是奇函数,为指数函数且的图象过点.

1)求实数n的值并写出的表达式;

2)若对任意的,不等式恒成立,求实数t的范围;

3)若方程恰有4个互异的实数根,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下利用斜二测画法得到的结论,其中正确的是(

A.相等的角在直观图中仍相等B.相等的线段在直观图中仍相等

C.平行四边形的直观图是平行四边形D.菱形的直观图是菱形

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将所有平面向量组成的集合记作, 是从的映射, 记作, 其中都是实数. 定义映射的模为: 的条件下的最大值, 记做. 若存在非零向量, 及实数使得, 则称的一个特征值.

, ;

如果, 计算的特征值, 并求相应的;

试找出一个映射, 满足以下两个条件: ①有唯一的特征值, . (不需证明)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列的前项和为,且成等差数列.

(1)的值,并证明为等比数列;

(2),若对任意的,不等式恒成立,试求实数的取值范围.

查看答案和解析>>

同步练习册答案