17£®ÒÑÖªÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=3cos¦È}\\{y=2sin¦È}\end{array}$£¨¦ÈΪ²ÎÊý£©£¬ÔÚͬһƽÃæÖ±½Ç×ø±êϵÖУ¬½«ÇúÏßCÉϵĵ㰴×ø±ê±ä»»$\left\{{\begin{array}{l}{x'=\frac{1}{3}x}\\{y'=\frac{1}{2}y}\end{array}}$µÃµ½ÇúÏßC'£¬ÒÔÔ­µãΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«Öᣬ½¨Á¢¼«×ø±êϵ£®
£¨1£©Ð´³öÇúÏßCÓëÇúÏßC'µÄ¼«×ø±êµÄ·½³Ì£» 
£¨2£©Èô¹ýµã$A£¨{2\sqrt{2}£¬\frac{¦Ð}{4}}£©$£¨¼«×ø±ê£©ÇÒÇãб½ÇΪ$\frac{¦Ð}{3}$µÄÖ±ÏßlÓëÇúÏßC½»ÓÚM£¬NÁ½µã£¬ÏÒMNµÄÖеãΪP£¬Çó$\frac{|AP|}{|AM|•|AN|}$µÄÖµ£®

·ÖÎö £¨1£©ÀûÓÃÈýÖÖ·½³ÌµÄת»¯·½·¨£¬Ð´³öÇúÏßCÓëÇúÏßC'µÄ¼«×ø±êµÄ·½³Ì£» 
£¨2£©ÀûÓòÎÊý·½³Ì£¬¼°²ÎÊýµÄ¼¸ºÎÒâÒ壬¼´¿ÉÇó$\frac{|AP|}{|AM|•|AN|}$µÄÖµ£®

½â´ð ½â£º£¨1£©$C£º\left\{{\begin{array}{l}{x=3cos¦È}\\{y=2sin¦È}\end{array}}\right.⇒C£º\frac{x^2}{9}+\frac{y^2}{4}=1$£¬
½«$\left\{{\begin{array}{l}{x'=\frac{1}{3}x}\\{y'=\frac{1}{2}y}\end{array}}\right.⇒\left\{{\begin{array}{l}{x=3x'}\\{y=2y'}\end{array}}\right.$£¬´úÈëCµÄÆÕͨ·½³Ì¿ÉµÃx'2+y'2=1£¬¼´C'£ºx2+y2=1¡­£¨2·Ö£©
½«$\left\{{\begin{array}{l}{x=¦Ñcos¦Á}\\{y=¦Ñsin¦Á}\end{array}}\right.$´úÈëÇúÏß·½³Ì¿ÉµÃ$C£º\frac{{{¦Ñ^2}{{cos}^2}¦Á}}{9}+\frac{{{¦Ñ^2}{{sin}^2}¦Á}}{4}=1$£¬C'£º¦Ñ=1£®¡­£¨5·Ö£©
£¨2£©µã$A£¨{2\sqrt{2}£¬\frac{¦Ð}{4}}£©$Ö±½Ç×ø±êÊÇA£¨2£¬2£©£¬½«lµÄ²ÎÊý·½³Ì$\left\{{\begin{array}{l}{x=2+tcos\frac{¦Ð}{3}}\\{y=3+tsin\frac{¦Ð}{3}}\end{array}}\right.$
´úÈë$\frac{x^2}{9}+\frac{y^2}{4}=1$£¬
¿ÉµÃ$\frac{31}{4}{t^2}+£¨8+18\sqrt{3}£©t+16=0$£¬¡­£¨7·Ö£©
ËùÒÔ$\frac{|AP|}{|AM|•|AN|}=\frac{{|{\frac{{{t_1}+{t_2}}}{2}}|}}{{|{{t_1}{t_2}}|}}=\frac{{4+9\sqrt{3}}}{16}$£®¡­£¨10·Ö£©

µãÆÀ ±¾Ì⿼²éÈýÖÖ·½³ÌµÄת»¯£¬¿¼²é²ÎÊý·½³ÌµÄÔËÓ㬿¼²éѧÉúµÄ¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÒÑÖªÍÖÔ²·½³ÌΪ$\frac{{x}^{2}}{49}$+$\frac{{y}^{2}}{24}$=1
£¨1£©ÇóÍÖÔ²µÄ½¹µã×ø±ê£¬¶¥µã×ø±ê£»
£¨2£©ÇóÒÔÍÖÔ²µÄ½¹µãΪ¶¥µã¡¢¶¥µãΪ½¹µãµÄË«ÇúÏß·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®É輯ºÏM={x|x£¾1}£¬P={x|x£¼4}£¬ÄÇô¡°x¡ÊM¡ÉP¡±ÊÇ¡°x¡ÊM»òx¡ÊP¡±µÄ£¨¡¡¡¡£©
A£®±ØÒª²»³ä·ÖÌõ¼þB£®³ä·Ö²»±ØÒªÌõ¼þ
C£®³äÒªÌõ¼þD£®¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑÖªº¯Êýf£¨x£©¶ÔÈÎÒâʵÊýx¾ùÓÐf£¨x£©=kf£¨x+2£©£¬ÆäÖг£ÊýkΪ¸ºÊý£¬f£¨x£©ÔÚÇø¼ä[0£¬2]ÉÏÂú×ãf£¨x£©=x£¨x-2£©£®
£¨1£©µ±k=-1ʱ£¬Çóf£¨-1£©£¬f£¨2.5£©µÄÖµ£»
£¨2£©Çóf£¨x£©ÔÚÇø¼ä[-2£¬4]ÉϵĽâÎöʽ£»
£¨3£©Çóf£¨x£©ÔÚÇø¼ä[-2£¬4]ÉϵÄ×î´óÖµ£¬²¢Çó³öÏàÓ¦µÄ×Ô±äÁ¿µÄÈ¡Öµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÒÑÖªËæ»úʼþAÓëB£¬¾­¼ÆËãµÃµ½K2µÄ·¶Î§ÊÇ3.841£¼K2£¼6.635£¬Ôò£¨Èç±íÊÇK2µÄÁÙ½çÖµ±í£¬¹©²Î¿¼£©£¨¡¡¡¡£©
P£¨K2¡Ýx0£©0.150.100.050.0250.0100.0050.001
x02.0722.7063.8415.0246.6357.87910.828
A£®ÓÐ95% °ÑÎÕ˵ʼþAÓëBÓйØB£®ÓÐ95% °ÑÎÕ˵ʼþAÓëBÎÞ¹Ø
C£®ÓÐ99% °ÑÎÕ˵ʼþAÓëBÓйØD£®ÓÐ99% °ÑÎÕ˵ʼþAÓëBÎÞ¹Ø

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®Èçͼ£¬Íø¸ñÖ½ÉÏСÕý·½Ðεı߳¤Îª1£¬´ÖÏß»­³öµÄÊÇijÈýÀâ׶µÄÈýÊÓͼ£¬Ôò¸ÃÈýÀâ׶µÄ±íÃæ»ýÊÇ£¨¡¡¡¡£©
A£®$1+\sqrt{5}$B£®$2+\sqrt{5}$C£®$1+2\sqrt{5}$D£®$2+2\sqrt{5}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®É踴ÊýzÂú×ã|z-3-4i|=1£¬ÆäÖÐiΪÐéÊýµ¥Î»£¬Ôò|z|µÄ×î´óÖµÊÇ£¨¡¡¡¡£©
A£®3B£®4C£®5D£®6

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÒÑÖª$¦Á¡Ê£¨\frac{¦Ð}{2}£¬¦Ð£©$£¬ÇÒ$sin¦Á=\frac{4}{5}$£®
£¨1£©Çó$cos£¨¦Á-\frac{¦Ð}{4}£©$µÄÖµ£»
£¨2£©Çó${sin^2}\frac{¦Á}{2}+\frac{sin4¦Ácos2¦Á}{1+cos4¦Á}$µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÒÑÖªÊýÁÐ{an}µÄÇ°nÏîºÍΪSn£¬ÇÒÂú×ãa1=1£¬2Sn=£¨n+1£©an£¬ÊýÁÐ{bn}ÖУ¬bn=2${\;}^{{a}_{n}+1}$£®
£¨¢ñ£©ÇóÊýÁÐ{an}£¬{bn}µÄͨÏʽ£»
£¨¢ò£©ÇóÊýÁÐ{$\frac{1}{{a}_{n}•£¨lo{g}_{2}{b}_{n}£©}$}µÄÇ°nÏîºÍTn£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸