【题目】如图,三棱锥中,底面为等边三角形,分别是的中点.
(1)证明:平面平面;
(2)如何在上找一点,使平面并说明理由;
(3)若,对于(2)中的点,求三棱锥的体积.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,椭圆()的左右两个焦点分别是、,在椭圆上运动.
(1)若对有最大值为120°,求出、的关系式;
(2)若点是在椭圆上位于第一象限的点,过点作直线的垂线,过作直线的垂线,若直线、的交点在椭圆上,求点的坐标;
(3)若设,在(2)成立的条件下,试求出、两点间距离的函数,并求出的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数列的前项1,3,7,,()组成集合,从集合中任取()个数,其所有可能的个数的乘积的和为(若只取一个数,规定乘积为此数本身),记.例如:当时,,,;时,,,,.
(1)当时,求,,,的值;
(2)证明:时集合的与时集合的(为以示区别,用表示)有关系式(,);
(3)试求(用表示).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某厂生产某种产品的年固定成本为250万元,每生产千件,需另投入成本,当年产量不足80千件时,(万元);当年产量不小于80千件时,(万元),每件售价为0.05万元,通过市场分析,该厂生产的商品能全部售完.
(1)写出年利润(万元)关于年产量(千件)的函数解析式;
(2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点F1、F2为双曲线(b>0)的左、右焦点,过F2作垂直于x轴的直线,在x轴上方交双曲线C于点M,且∠MF1F2=30°,圆O的方程是x2+y2=b2.
(1)求双曲线C的方程;
(2)过双曲线C上任意一点P作该双曲线两条渐近线的垂线,垂足分别为P1、P2,求的值;
(3)过圆O上任意一点Q作圆O的切线l交双曲线C于A、B两点,AB中点为M,求证:|AB|=2|OM|.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图(1)所示,五边形中,,,分别是线段的中点,且,现沿翻折,使得,得到的图形如图(2)所示.
图(1) 图(2)
(1)证明:平面;
(2)若平面与平面所成角的平面角的余弦值为,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com