精英家教网 > 高中数学 > 题目详情
已知函数f (x+1)是奇函数,f (x-1)是偶函数,且f (0)=2,则f (2012)=(  )
分析:先根据函数f(x+1)为奇函数得到f(x+1)=-f(-x+1);再结合函数f(x-1)是偶函数得到f(x-1)=f(-x-1),联立可求函数的周期,然后把所求的f(2012)转化可求即可得到答案.
解答:解:因为函数f(x+1)为奇函数
所以有:f(x+1)=-f(-x+1)
令t=x+1可得f(t)=-f(2-t)
∵函数f(x-1)是偶函数
∴f(x-1)=f(-x-1),令x-1=t,则可得,f(t)=f(-t-2)
∴f(-t-2)=-f(-t+2)
令-t-2=m,则f(m)=-f(m+4),f(m+8)=f(m)即函数以8为周期的周期函数
∴f(2012)=f(4)=-f(0)=-2
故选A
点评:本题主要考查函数奇偶性的应用.解决问题的关键在于根据函数f(x+1)为奇函数得到f(x+1)=-f(-x+1);再结合函数f(x-1)是偶函数得到f(x-1)=f(-x-1)求解出函数的周期
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

12、已知函数f(x-1)=x2-2x+2,则f(x)=
x2+1

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法中:
①y=2x与y=log2x互为反函数,其图象关于y=x对称;
②函数y=f(x)满足f(2+x)=f(2-x),则其图象关于直线x=2对称;
③已知函数f(x-1)=x2-2x+1.则f(5)=26;
④已知△ABC,P为平面ABC外任意一点,且PA⊥PB⊥PC,则点P在平面ABC内的正投影是△ABC的垂心.
正确的是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x+1)为奇函数,函数f(x-1)为偶函数,且f(0)=2,则f(4)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•无锡二模)已知函数f(x+1)为奇函数,函数f(x-1)为偶函数,且f(0)=2,则f(4)=
-2
-2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x+1)=2x-1,则f(5)=
8
8

查看答案和解析>>

同步练习册答案