精英家教网 > 高中数学 > 题目详情
19.菱形ABCD中,E,F分别是AD,CD中点,若∠BAD=60°,AB=2,则$\overrightarrow{AF}$•$\overrightarrow{BE}$=(  )
A.$\frac{5}{2}$B.-$\frac{5}{2}$C.$\frac{3}{2}$D.-$\frac{3}{2}$

分析 通过建立直角坐标系,表示出菱形ABCD的四个顶点,再求出中点E、F,利用向量的坐标运算和数量积运算可得结果.

解答 解:菱形ABCD中,AB=2,∠BAD=60°,E、F分别为AD、CD的中点,
建立平面直角坐标系,如图所示;

则A(-$\sqrt{3}$,0),B(0,1),C($\sqrt{3}$,0),D(0,-1),
E(-$\frac{\sqrt{3}}{2}$,-$\frac{1}{2}$),F($\frac{\sqrt{3}}{2}$,-$\frac{1}{2}$),
∴$\overrightarrow{AF}$=($\frac{3\sqrt{3}}{2}$,-$\frac{1}{2}$),
$\overrightarrow{BE}$=(-$\frac{\sqrt{3}}{2}$,-$\frac{3}{2}$),
∴$\overrightarrow{AF}$•$\overrightarrow{BE}$=$\frac{3\sqrt{3}}{2}$×(-$\frac{\sqrt{3}}{2}$)+(-$\frac{1}{2}$)×(-$\frac{3}{2}$)=-$\frac{3}{2}$.
故选:D.

点评 本题考查了向量的坐标表示和数量积运算问题,是综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=$\left\{\begin{array}{l}{-{x}^{2},x>1}\\{\frac{1}{{2}^{x-1}},x≤1}\end{array}\right.$,则f(f($\sqrt{2}$))等于(  )
A.-3B.$\frac{1}{8}$C.3D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知奇函数f(x)满足$f(x+\frac{3}{2})=-f(x)$,且当x∈(0,2)时,f(x)=2x,则f(5)=(  )
A.32B.2C.$\frac{1}{2}$D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.计算:$\lim_{n→∞}\frac{2^n}{{{3^n}+1}}$=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若直线 过点(1,1)且与两坐标轴所围成的三角形的面积为2,则这样的直线 有(  )
A.1条B.2条C.3条D.4条

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1的左、右焦点分别为F1,F2,弦AB过F1,若△ABF2的内切圆面积为π,A,B两点的坐标分别为(x1,y1)和(x2,y2),则|y2-y1|的值为(  )
A.$\frac{5}{3}$B.$\frac{20}{3}$C.$\frac{\sqrt{5}}{3}$D.$\frac{10}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知△ABC是边长为2的等边三角形,则$\overrightarrow{AB}$•$\overrightarrow{BC}$=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.顶点哎坐标原点,始边为x轴正半轴的角α的终边与单位圆(圆心为原点,半径为1的圆)的交点坐标为$({x,\frac{3}{5}})$,则cscα=$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,四棱锥P-ABCD中,AD∥BC,$AB=BC=\frac{1}{2}AD$,E,F,H分别为线段AD,PC,CD的中点,AC与BE交于O点,G是线段OF上一点.
(1)求证:AP∥平面BEF;
(2)求证:GH∥平面PAD.

查看答案和解析>>

同步练习册答案