精英家教网 > 高中数学 > 题目详情
9.已知z=$\frac{-3-i}{1+2i}$,则z的虚部为(  )
A.1B.-1C.-iD.i

分析 直接利用复数代数形式的乘除运算化简得答案.

解答 解:z=$\frac{-3-i}{1+2i}$=$\frac{(-3-i)(1-2i)}{(1+2i)(1-2i)}$=$\frac{-5+5i}{5}=-1+i$,
∴z的虚部为1.
故选:A.

点评 本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知向量$\overrightarrow a=({-2,2})$,$\overrightarrow b=({5,m})$,且|$\overrightarrow a+\overrightarrow b|$不超过5,则函数f(x)=$\sqrt{3}$cosx-sinx+m有零点的概率是(  )
A.$\frac{3}{4}$B.$\frac{2}{3}$C.$\frac{3}{5}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.数列-$\frac{1}{2}$,$\frac{1}{4}$,-$\frac{1}{8}$,$\frac{1}{16}$,…的一个通项公式是(  )
A.-$\frac{1}{{2}^{n}}$$\frac{(-1)^{n}}{{2}^{n}}$B.$\frac{(-1)^{n}}{{2}^{n}}$C.$\frac{(-1)^{n+1}}{{2}^{n}}$D.$\frac{(-1)^{n}}{{2}^{n-1}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若直线x+(2-a)y+1=0与圆x2+y2-2y=0相切,则a的值为(  )
A.1或-1B.2或-2C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知等比数列{an}的首项a1=2015,数列{an}前n项和记为Sn
(1)若${S_3}=\frac{6045}{4}$,求等比数列{an}的公比q;
(2)在(1)的条件下证明:S2≤Sn≤S1
(3)数列{an}前n项积记为Tn,在(1)的条件下判断|Tn|与|Tn+1|的大小,并求n为何值时,Tn取得最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.如图所示,三棱锥P-ABC中,△ABC是边长为3的等边三角形,D是线段AB的中点,DE∩PB=E,且DE⊥AB,若∠EDC=120°,PA=$\frac{3}{2}$,PB=$\frac{3\sqrt{3}}{2}$,则三棱锥P-ABC的外接球的表面积为13π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知实数x,y满足$\left\{\begin{array}{l}{x+y≤10}\\{x-y+2≥0}\\{x≥0,y≥0}\end{array}\right.$,则z=x+$\frac{y}{2}$的最大值为(  )
A.7B.1C.10D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图,已知点D为△ABC的边BC上一点,$\overrightarrow{BD}$=3$\overrightarrow{DC}$,En(n∈N+)为边AC的一列点,满足$\overrightarrow{{E}_{n}A}$=$\frac{1}{4}$an+1$\overrightarrow{{E}_{n}B}$-(3an+2)$\overrightarrow{{E}_{n}D}$,其中实数列{an}中an>0,a1=1,则{an}的通项公式为(  )
A.3•2n-1-2B.2n-1C.3n-2D.2•3n-1-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知集合$A=\{x|{x^2}-2x>0\},B=\{x|-\sqrt{5}<x<\sqrt{5}\}$,则(  )
A.A⊆BB.B⊆AC.A∪B=RD.A∩B=∅

查看答案和解析>>

同步练习册答案