已知:圆C过点A(6,0),B(1,5)且圆心在直线上,求圆C的方程。
.
解析试题分析:由圆C过A和B点,得到AB为圆C的弦,求出线段AB垂直平分线的方程,根据垂径定理得到圆心C在此方程上,方法是利用中点坐标公式求出线段AB的中点,根据直线AB的斜率,利用两直线垂直时斜率的乘积为-1求出线段AB垂直平分线的斜率,由求出的中点坐标和斜率写出线段AB垂直平分线的方程,与直线l联立组成方程组,求出方程组的解即可确定出圆心C的坐标,然后再根据两点间的距离公式求出|AC|的长即为圆C的半径,由圆心和半径写出圆C的标准方程即可.
解法1:设所求圆的方程为。由题意可得
,
解得: 所以求圆C的方程为
.
解法2:求出AB垂直平分线方程联立方程组
求出半径,写出圆C的方程为
.
考点:此题考查了中点坐标公式,两直线垂直时斜率满足的关系,垂径定理及两点间的距离公式,理解圆中弦的垂直平分线一定过圆心是解本题的关键.
科目:高中数学 来源: 题型:解答题
在平面直角坐标系中,曲线
的参数方程为
,(其中
为参数,
),在极坐标系(以坐标原点
为极点,以
轴非负半轴为极轴)中,曲线
的极坐标方程为
.
(1)把曲线和
的方程化为直角坐标方程;
(2)若曲线上恰有三个点到曲线
的距离为
,求曲线
的直角坐标方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在平面直角坐标系中,点
,直线
.设圆
的半径为
,圆心在
上.
(1)若圆心也在直线
上,过点
作圆
的切线,求切线的方程;
(2)若圆上存在点
,使
,求圆心
的横坐标
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知曲线C:
(1)当为何值时,曲线C表示圆;
(2)在(1)的条件下,若曲线C与直线交于M、N两点,且
,求
的值.
(3)在(1)的条件下,设直线与圆
交于
,
两点,是否存在实数
,使得以
为直径的圆过原点,若存在,求出实数
的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
过点Q(-2,)作圆O:x2+y2=r2(r>0)的切线,切点为D,且|QD|=4.
(1)求r的值.
(2)设P是圆O上位于第一象限内的任意一点,过点P作圆O的切线l,且l交x轴于点A,交y轴于点B,设=
+
,求|
|的最小值(O为坐标原点).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com