A. | 横坐标伸长为原来的2倍,再向右平移$\frac{π}{6}$个单位 | |
B. | 横坐标伸长为原来的2倍,再向右平移$\frac{π}{12}$个单位 | |
C. | 横坐标缩短为原来的$\frac{1}{2}$倍,再向右平移$\frac{π}{12}$个单位 | |
D. | 横坐标缩短为原来的$\frac{1}{2}$倍,再向右平移$\frac{π}{12}$个单位 |
分析 利用三角恒等变换化简函数的解析式,利用正弦函数的周期性求得ω的值,再利用函数y=Asin(ωx+φ)的图象变换规律得出结论.
解答 解:函数y=sinωxcosωx+$\sqrt{3}$cos2ωx-$\frac{\sqrt{3}}{2}$=$\frac{1}{2}$sin(2ωx)+$\frac{\sqrt{3}}{2}$cos(2ωx)=sin(2ωx+$\frac{π}{3}$)=cos(2ωx-$\frac{π}{6}$),
由最小正周期为$\frac{2π}{2ω}$=π,∴ω=1,
若想得到它的图象,可将函数y=cosx的图象横坐标变为原来的$\frac{1}{2}$倍,得到y=cos2x的图象;
再向右平移$\frac{π}{12}$个单位,可得y=cos2(x-$\frac{π}{12}$)=cos(2x-$\frac{π}{6}$)的图象,
故选:C.
点评 本题主要考查三角恒等变换,正弦函数的周期性,函数y=Asin(ωx+φ)的图象变换规律,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{7}{5}$ | B. | $\frac{5}{7}$ | C. | $\frac{4}{5}$ | D. | $\frac{6}{7}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 240 | B. | 260 | C. | 320 | D. | -320 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com