【题目】“勾股定理”在西方被称为“毕达哥拉斯定理”,三国时期吴国的数学家赵爽创制了一幅“勾股圆方图”,用数形结合的方法给出了勾股定理的详细证明.如图所示的“勾股圆方图”中,四个相同的直角三角形与中间的小正方形拼成一个大正方形.现随机地向大正方形内部区域投掷飞镖,若飞镖落在小正方形区域的概率是,则直角三角形的两条直角边长的比是(长边:短边)( )
A.B.C.D.
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线 (为参数),直(为参数),以为极点,轴正半轴为极轴建立极坐标系.
(1)求与的极坐标方程;
(2)当时,直线与相交于两点;过点作的垂线,与曲线的另一个交点为,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数.
(1)当时,求曲线在处的切线方程;
(2)当时,求函数的单调区间;
(3)在(2)的条件下,设函数,若对于,,使成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(I)若函数在区间上不是单调函数,求实数的取值范围;
(II)是否存在实数,使得函数图像与直线有两个交点?若存在,求出所有的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在如图所示的几何体中,四边形是正方形,是等腰梯形,,,,.给出下列三个命题:
平面平面;
异面直线与所成角的余弦值为;
直线与平面所成角的正弦值为.
那么,下列命题为真命题的是( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某面包店随机收集了面包种类的有关数据,经分类整理得到下表:
面包类型 | 第一类 | 第二类 | 第三类 | 第四类 | 第五类 | 第六类 |
面包个数 | 90 | 60 | 30 | 80 | 100 | 40 |
好评率 | 0.6 | 0.45 | 0.7 | 0.35 | 0.6 | 0.5 |
好评率是指:一类面包中获得好评的个数与该类面包的个数的比值.
(1)从面包店收集的面包中随机选取1个,求这个面包是获得好评的第五类面包的概率;
(2)从面包店收集的面包中随机选取1个,估计这个面包没有获得好评的概率;
(3)面包店为增加利润,拟改变生产策略,这将导致不同类型面包的好评率发生变化.假设表格中只有两类面包的好评率数据发生变化,那么哪类面包的好评率增加0.1,哪类面包的好评率减少0.1,使得获得好评的面包总数与样本中的面包总数的比值达到最大?(只需写出结论)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数的图象与x轴交于点A,B(点A在点B的左侧),函数的图象与x轴交于点C,D(点C在点D的左侧),其中,.
(1)求证:函数与的图象交点落在一条定直线上;
(2)若,求a,b和k应满足的关系式:
(3)是否存在函数和,使得B,C为线段AD的三等分点?若存在,求的值,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列的前项和为,已知(),且.
(1)证明为等比数列,并求数列的通项公式;
(2)设,且证明;
(3)在(2)小问的条件下,若对任意的,不等式恒成立,试求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com