精英家教网 > 高中数学 > 题目详情

【题目】pf(x)在区间(1,+∞)上是减函数;q:若x1x2是方程x2ax20的两个实根,则不等式m25m3≥|x1x2|对任意实数a[1,1]恒成立.若p不正确,q正确,求实数m的取值范围.

【答案】{m|m>1}

【解析】试题分析:先根据分式函数的单调性求出命题p为真时m的取值范围,然后根据题意求出|x1-x2|的最大值,再解不等式,若-p∧q为真则命题pq真,从而可求出m的取值范围.

试题解析:由于f(x)的单调递减区间是(m)(m,+∞),而f(x)又在(1,+∞)上是减函数,所以m≤1,即pm≤1.对于命题q|x1x2|≤3,则m25m3≥3,即m25m6≥0

解得m≥1m≤6,若pq为真,则pq真,所以解之得m1,因此实数m的取值范围是(1,+∞)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在极坐标系中,设圆4 cos 与直线l (R)交于AB两点.

求以AB为直径的圆的极坐标方程

(Ⅱ)在圆任取一点,在圆上任取一点,求的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(导学号:05856309)

已知抛物线C的方程为x2=4yM(2,1)为抛物线C上一点,F为抛物线的焦点.

(Ⅰ)求|MF|;

(Ⅱ)设直线l2ykxm与抛物线C有唯一公共点P,且与直线l1y=-1相交于点Q,试问,在坐标平面内是否存在点N,使得以PQ为直径的圆恒过点N?若存在,求出点N的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高中一年级600名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成组:[20,30),[30,40),┄,[80,90],并整理得到如下频率分布直方图:

(1)从总体的600名学生中随机抽取一人,估计其分数小于70的概率;

(2)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;

(3)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=(m2m-1)·是幂函数,对任意x1x2∈(0,+∞)且x1x2,满足,若ab∈R且ab>0,ab<0,则f(a)+f(b)的值(  )

A. 恒大于0 B. 恒小于0

C. 等于0 D. 无法判断

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果函数f(x)=x3x满足:对于任意的x1x2∈[0,2],都有|f(x1)-f(x2)|≤a2恒成立,则a的取值范围是(  )

A. [- ]

B. [- ]

C. (-∞,- ]∪[,+∞)

D. (-∞,- ]∪[,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,有三个不同的零点,(其中),则的值为( )

A. B. C. -1 D. 1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的单调函数f(x)满足f(2),且对任意xyR,都有f(xy)f(x)f(y)

(1)求证:f(x)为奇函数;

(2)f(k·3x)f(3x9x2)<0对任意xR恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱柱中,底面是正方形,且

1)求证

2)若动点在棱上,试确定点的位置,使得直线与平面所成角的正弦值为

查看答案和解析>>

同步练习册答案