精英家教网 > 高中数学 > 题目详情
若sinα+cosα=tanα(0<α<
π
2
),则α所在的区间(  )
A、(0,
π
6
B、(
π
6
π
4
C、(
π
4
π
3
D、(
π
3
π
2
分析:利用两角和正弦公式求出tanα,再根据α的范围和正弦函数的性质,求出tanα的范围,由正切函数的性质和答案的内容选出答案.
解答:解:由题意知,tanα=sinα+cosα=
2
sin(α+
π
4
)>1,排除B;
∵0<α<
π
2
,∴
π
4
α+
π
4
4
,∴
2
2
<sin(α+
π
4
)≤1,
即tanα∈(1,
2
],tan
π
3
=
3
2

故选C.
点评:本题考查了正弦函数和正切函数的性质应用,即对解析式化简后,根据自变量的范围或值域,求出对应函数的值域或定义域.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

sinα+cosαsinα-cosα
=3,tan(α-β)=2,则tan(β-2α)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

sinθ+cosθ=
6
3
,θ∈(0,π),则cosθ-sinθ
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

sinθ+cosθ=
2
,则tan(θ+
π
3
)
的值是(  )
A、2-
3
B、-2-
3
C、2+
3
D、-2+
3

查看答案和解析>>

科目:高中数学 来源: 题型:

有以下4个结论:①若sinα+cosα=1,那么sinnα+cosnα=1; ②x=
1
8
π
是函数y=sin (2x+
5
4
π)
的一条对称轴; ③y=cosx,x∈R在第四象限是增函数; ④函数y=sin (
3
2
π+x)
是偶函数;  其中正确结论的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

sinθ+cosθ<-
5
4
,且sinθ-cosθ<0,则tanθ
(  )

查看答案和解析>>

同步练习册答案