精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系xOy中,直线l的参数方程为 为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴非负半轴为极轴)中,圆C的方程为ρ=6sinθ
(1)求圆C的直角坐标方程;
(2)若点P(1,2),设圆C与直线l交于点A、B,求 的最小值.

【答案】
(1)解:圆C的方程为ρ=6sinθ,可化为直角坐标方程为x2+y2=6y,即x2+(y﹣3)2=9;
(2)解:直线l的参数方程为 为参数),代入x2+(y﹣3)2=9,可得t2+2(cosα﹣sinα)t﹣7=0,

∴t1+t2=﹣2(cosα﹣sinα),t1t2=﹣7,

= = =

的最小值为


【解析】(1)利用极坐标与直角坐标的互化方法,求圆C的直角坐标方程;(2)利用参数的几何意义,求 的最小值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在棱柱ABC﹣A1B1C1中,点C在平面A1B1C1内的射影点为的A1B1中点O,AC=BC=AA1 , ∠ACB=90°.
(1)求证:AB⊥平面OCC1
(2)求二面角A﹣CC1﹣B的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在直角坐标系中,曲线的C参数方程为 (φ为参数),现以原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρ=
(1)求曲线C的普通方程和直线l的直角坐标方程;
(2)在曲线C上是否存在一点P,使点P到直线l的距离最小?若存在,求出距离的最小值及点P的直角坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= + lnx﹣1(m∈R)的两个零点为x1 , x2(x1<x2).
(1)求实数m的取值范围;
(2)求证: +

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足an+1=an﹣2an+1an , an≠0且a1=1
(1)求证:数列 是等差数列,并求出{an}的通项公式;
(2)令 ,求数列{bn}的前2n项的和T2n

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知正三棱柱ABC﹣A1B1C1的底面积为 ,侧面积为36;
(1)求正三棱柱ABC﹣A1B1C1的体积;
(2)求异面直线A1C与AB所成的角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2x﹣5,g(x)=4x﹣x2 , 给下列三个命题: p1:若x∈R,则f(x)f(﹣x)的最大值为16;
p2:不等式f(x)<g(x)的解集为集合{x|﹣1<x<3}的真子集;
p3:当a>0时,若x1 , x2∈[a,a+2],f(x1)≥g(x2)恒成立,则a≥3,
那么,这三个命题中所有的真命题是(
A.p1 , p2 , p3
B.p2 , p3
C.p1 , p2
D.p1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a、b、c分别是△ABC的三个内角∠A、∠B、∠C的对边,acosB+ b=c.
(1)求∠A的大小;
(2)若等差数列{an}中,a1=2cosA,a5=9,设数列{ }的前n项和为Sn , 求证:Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】网上购物逐步走进大学生活,某大学学生宿舍4人积极参加网购,大家约定:每个人通过掷一枚质地均匀的骰子决定自己去哪家购物,掷出点数为5或6的人去淘宝网购物,掷出点数小于5的人去京东商场购物,且参加者必须从淘宝和京东商城选择一家购物.
(Ⅰ)求这4人中恰有1人去淘宝网购物的概率;
(Ⅱ)用ξ、η分别表示这4人中去淘宝网和京东商城购物的人数,记X=ξη,求随机变量X的分布列与数学期望EX.

查看答案和解析>>

同步练习册答案