分析 (1)因为25<28<30,所以把x=28代入y=40-x即可求出该产品的年销售量为多少万件;
(2)由(1)中y于x的函数关系式和根据年获利=年销售收入-生产成本-投资成本,得到w和x的二次函数关系,再有x的取值范围不同分别讨论即可知道该公司是盈利还是亏损,若盈利,最大利润是多少?若亏损,最小亏损是多少?
解答 解:(1)∵25≤28≤30,$y=\left\{\begin{array}{l}40-x({25≤x≤30})\\ 25-0.5x({30<x≤35})\end{array}\right.$,
∴把x=28代入y=40-x得y=12(万件),
答:当销售单价定为28元时,该产品的年销售量为12万件;
(2)①当 25≤x≤30时,W=(40-x)(x-20)-25-100=-x2+60x-925=-(x-30)2-25,
故当x=30时,W最大为-25,即公司最少亏损25万;
②当30<x≤35时,W=(25-0.5x)(x-20)-25-100
=-$\frac{1}{2}$x2+35x-625=-$\frac{1}{2}$(x-35)2-12.5
故当x=35时,W最大为-12.5,即公司最少亏损12.5万;
对比①,②得,投资的第一年,公司亏损,最少亏损是12.5万;
答:投资的第一年,公司亏损,最少亏损是12.5万.
点评 本题主要考查二次函数在实际中应用,最大销售利润的问题常利函数的增减性来解答,我们首先要弄懂题意,确定变量,建立函数模型解答,其中要注意应该在自变量的取值范围内求最大值.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com