精英家教网 > 高中数学 > 题目详情
解析式为y=x2,值域为{1,4}的函数共有
9
9
个.
分析:由已知中所求函数解析式为y=x2,值域为{1,4},根据x2=1⇒x=±1,x2=4⇒x=±2,我们可得函数的定义域为集合{-2,-1,1,2}的子集,而且至少有两个元素,且必含有±1的一个,±2中的一个,由此列举出所有满足条件的函数,即可得到答案.
解答:解:若x2=1,则x=±1,
若x2=4,则x=±2,
故解析式为y=x2,值域为{1,4}的函数可能为:
y=x2(x∈{1,2});
y=x2(x∈{-1,2});
y=x2(x∈{1,-2});
y=x2(x∈{-1,-2});
y=x2(x∈{-1,1,2});
y=x2(x∈{-2,1,2});
y=x2(x∈{-2,-1,1});
y=x2(x∈{-2,-1,2});
y=x2(x∈{-2,-1,1,2});共9个
故答案为:9
点评:本题考查的知识点是函数的概念及其构成要素,其中根据已知中的函数解析式和函数的值域,分析出函数定义域中元素的特点是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数y=Asin(ωx+φ),在同一周期内,当x=
π
12
时,取最大值y=2,当x=
12
时,取得最小值y=-2,那么函数的解析式为(  )
A、y=
1
2
sin(x+
π
3
B、y=2sin(2x+
π
3
C、y=2sin(
x
2
-
π
6
D、y=2sin(2x+
π
6

查看答案和解析>>

科目:高中数学 来源: 题型:

若一系列函数的解析式相同,值域相同,但其定义域不同,则称这些函数为“同值函数”.那么解析式为y=x2,值域为{4,0}的“同值函数”共有
3
3
个.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义{a,b,c}为函数y=ax2+bx+c的“特征数”.如:函数y=x2-2x+3的“特征数”是{1,-2,3},函数y=2x+3的“特征数”是{0,2,3,},函数y=-x的“特征数”是{0,-1,0}
(1)将“特征数”是{0,
3
3
,1
}的函数图象向下平移2个单位,得到的新函数的解析式是
y=
3
3
x-1
y=
3
3
x-1
; (答案写在答卷上)
(2)在(1)中,平移前后的两个函数分别与y轴交于A、B两点,与直线x=
3
分别交于D、C两点,在平面直角坐标系中画出图形,判断以点A、B、C、D为顶点的四边形形状,并说明理由;
(3)若(2)中的四边形与“特征数”是{1,-2b,b2+
1
2
}的函数图象的有交点,求满足条件的实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

若一系列函数的解析式相同,值域相同,但其定义域不同,则称这些函数为“同值函数”.那么解析式为y=x2,值域为{4,0}的“同值函数”共有________个.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若一系列函数的解析式相同,值域相同,但其定义域不同,则称这些函数为“同值函数”.那么解析式为y=x2,值域为{4,0}的“同值函数”共有______个.

查看答案和解析>>

同步练习册答案