精英家教网 > 高中数学 > 题目详情

【题目】为庆祝国庆节,某中学团委组织了歌颂祖国,爱我中华知识竞赛,从参加考试的学生中抽出60名,将其成绩(成绩均为整数)分成[4050)[5060)[90100)六组,并画出如图所示的部分频率分布直方图,观察图形,回答下列问题:

(1)求第四组的频率,并补全这个频率分布直方图;

(2)估计这次考试的及格率(60分及以上为及格)和平均分.

【答案】(1)0.3;图见解析;(2) 及格率是75%;平均分为71分.

【解析】

(1)利用各组的频率和等于1可求;

(2)及格率就是[60,100]之间的频率之和,平均分利用区间中点值和频率积进行求解.

解:(1)因为各组的频率和等于1

所以第四组的频率为.

补全的频率分布直方图如图所示.

(2)依题意可得第三、四、五、六组的频率之和为(0.0150.0300.0250.005)×100.75

则可估计这次考试的及格率是75%.

因为抽取学生的平均分约为45×0.155×0.15665×0.1575×0.385×0.2595×0.0571(),所以可估计这次考试的平均分为71分.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值.由测量表得到如下频率分布直方图

(1)补全上面的频率分布直方图(用阴影表示);

(2)统计方法中,同一组数据常用该组区间的中间值作为代表,据此估计这种产品质量指标值服从正态分布Z(μ,σ2),其中μ近似为样本平均值,σ2近似为样本方差s2(组数据取中间值);

①利用该正态分布,求从该厂生产的产品中任取一件,该产品为合格品的概率;

②该企业每年生产这种产品10万件,生产一件合格品利润10元,生产一件不合格品亏损20元,则该企业的年利润是多少?

参考数据:=5.1,若Z~N(μ,σ2),则P(μ﹣σ,μ+σ)=0.6826,P(μ﹣2σ,μ+2σ)=0.9544.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】郴州市某中学从甲乙两个教师所教班级的学生中随机抽取100人,每人分别对两个教师进行评分,满分均为100分,整理评分数据,将分数以10为组距分成6组:.得到甲教师的频率分布直方图,和乙教师的频数分布表:

乙教师分数频数分布表

分数区间

频数

3

3

15

19

35

25

(1)在抽样的100人中,求对甲教师的评分低于70分的人数;

(2)从对乙教师的评分在范围内的人中随机选出2人,求2人评分均在范围内的概率;

(3)如果该校以学生对老师评分的中位数是否大于80分作为衡量一个教师是否可评为该年度该校优秀教师的标准,则甲、乙两个教师中哪一个可评为年度该校优秀教师?(精确到0.1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】十九大提出:坚决打赢脱贫攻坚战,做到精准扶贫,某帮扶单位为帮助定点扶贫村真正脱贫,坚持扶贫同扶智相结合,帮助贫困村种植脐橙,并利用互联网电商进行销售,为了提高销量,现从该村的脐橙树上随机摘下100个脐橙进行测重,其质量(单位克)分布在区间[200500内,由统计的质量数据作出频率分布直方图如图所示.

1)按分层抽样的方法从质量在的脐橙中随机抽取5个,再从这5个脐橙中随机抽取2个,求这2个脐橙质量至少有一个不小于400克的概率;

2)以各组数据的中间数值代替这组数据的平均值,以频率代替概率,已知该村的脐橙种植地上大约还有100000个脐橙待出售,某电商提出两种收购方案:

A.所有脐橙均以7/千克收购;

B.低于350克的脐橙以2/个收购,其余的以3/个收购.

请你通过计算为该村选择收益较好的方案.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,直线过定点.

1)若与圆相切,求的方程;

2)若与圆相交于两点,求三角形面积的最大值,并求此时的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,曲线处的切线斜率为0

求b;若存在使得,求a的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在中国国际大数据产业博览会期间,有甲、乙、丙、丁4名游客准备到贵州的黄果树瀑布、梵净山、万峰林三个景点旅游参观,其中的每个人只去一个景点,每个景点至少要去一个人,则游客甲去梵净山的概率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市交管部门为了宣传新交规举办交通知识问答活动,随机对该市15~65岁的人群抽样,回答问题统计结果如图表所示.

组别

分组

回答正确的人数

回答正确的人数占本组的概率

第1组

[15,25)

5

0.5

第2组

[25,35)

0.9

第3组

[35,45)

27

第4组

[45,55)

0.36

第5组

[55,65)

3

(1)分别求出的值;

(2)从第2,3,4组回答正确的人中用分层抽样方法抽取6人,则第2,3,4组每组应各抽取多少人?

(3)在(2)的前提下,决定在所抽取的6人中随机抽取2人颁发幸运奖,求:所抽取的人中第2组至少有1人获得幸运奖的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数其中为常数且处取得极值.

1时,求的单调区间;

2上的最大值为1,求的值.

查看答案和解析>>

同步练习册答案