11£®ÒÑÖª$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1¡¢F2£¬|F1F2|=2$\sqrt{5}$£¬µãPÔÚÍÖÔ²ÉÏ£¬tan¡ÏPF2F1=2£¬ÇÒ¡÷PF1F2µÄÃæ»ýΪ4£®
£¨1£©ÇóÍÖÔ²µÄ·½³Ì£»
£¨2£©µãMÊÇÍÖÔ²ÉÏÈÎÒâÒ»µã£¬A1¡¢A2·Ö±ðÊÇÍÖÔ²µÄ×ó¡¢ÓÒ¶¥µã£¬Ö±ÏßMA1£¬MA2ÓëÖ±Ïßx=$\frac{3\sqrt{5}}{2}$·Ö±ð½»ÓÚE£¬FÁ½µã£¬ÊÔÖ¤£ºÒÔEFΪֱ¾¶µÄÔ²½»xÖáÓÚ¶¨µã£¬²¢Çó¸Ã¶¨µãµÄ×ø±ê£®

·ÖÎö £¨1£©ÓÉÒÑÖªÇó³ö¡ÏPF2F1µÄÕýÏÒºÍÓàÏÒÖµ£¬ÔÙÓÉ¡÷PF1F2µÄÃæ»ýΪ4¼°ÓàÏÒ¶¨Àí¿ÉµÃPµ½Á½½¹µãµÄ¾àÀ룬ÇóµÃa£¬½øÒ»²½ÇóµÃb£¬ÔòÍÖÔ²·½³Ì¿ÉÇó£»
£¨2£©ÓÉ£¨1£©ÇóµÃÁ½¸ö¶¨µãµÄ×ø±ê£¬Éè³öM×ø±ê£¬µÃµ½Ö±ÏßMA1£¬MA2µÄ·½³Ì£¬½øÒ»²½Çó³öE£¬FµÄ×ø±ê£¬ÓÉkQE•kQF=-1µÃ´ð°¸£®

½â´ð ½â£º£¨1£©¡ßtan¡ÏPF2F1=2£¬¡àsin¡ÏPF2F1=$\frac{2\sqrt{5}}{5}$£¬cos¡ÏPF2F1=$\frac{\sqrt{5}}{5}$£®
ÓÉÌâÒâµÃ$\left\{\begin{array}{l}{\frac{1}{2}¡Á2\sqrt{5}|P{F}_{2}|¡Á\frac{2\sqrt{5}}{5}=4}\\{|P{F}_{1}{|}^{2}=|P{F}_{2}{|}^{2}+£¨2\sqrt{5}£©^{2}-2|P{F}_{2}|¡Á2\sqrt{5}¡Á\frac{\sqrt{5}}{5}}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{|P{F}_{1}|=4}\\{|P{F}_{2}|=2}\end{array}\right.$£®
´Ó¶ø2a=|PF1|+|PF2|=4+2=6£¬µÃa=3£¬½áºÏ2c=2$\sqrt{5}$£¬µÃb2=4£¬
¹ÊÍÖÔ²µÄ·½³ÌΪ$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{4}=1$£»
£¨2£©ÓÉ£¨1£©µÃA1£¨-3£¬0£©£¬A2£¨3£¬0£©£¬
ÉèM£¨x0£¬y0£©£¬ÔòÖ±ÏßMA1µÄ·½³ÌΪ$y=\frac{{y}_{0}}{{x}_{0}+3}£¨x+3£©$£¬
ËüÓëÖ±Ïßx=$\frac{3\sqrt{5}}{2}$µÄ½»µãµÄ×ø±êΪ$E£¨\frac{3\sqrt{5}}{2}£¬\frac{{y}_{0}}{{x}_{0}+3}£¨\frac{3\sqrt{5}}{2}+3£©£©$£¬
Ö±ÏßMA2µÄ·½³ÌΪ$y=\frac{{y}_{0}}{{x}_{0}-3}£¨x-3£©$£¬ËüÓëÖ±Ïßx=$\frac{3\sqrt{5}}{2}$µÄ½»µãµÄ×ø±êΪ$F£¨\frac{3\sqrt{5}}{2}£¬\frac{{y}_{0}}{{x}_{0}-3}£¨\frac{3\sqrt{5}}{2}-3£©£©$£¬
ÔÙÉèÒÔEFΪֱ¾¶µÄÔ²½»xÖáÓÚµãQ£¨m£¬0£©£¬ÔòQE¡ÍQF£¬´Ó¶økQE•kQF=-1£¬
¼´$\frac{\frac{{y}_{0}}{{x}_{0}+3}£¨\frac{3\sqrt{5}}{2}+3£©}{\frac{3\sqrt{5}}{2}-m}•\frac{\frac{{y}_{0}}{{x}_{0}-3}£¨\frac{3\sqrt{5}}{2}-3£©}{\frac{3\sqrt{5}}{2}-m}=-1$£¬¼´$\frac{\frac{9}{4}{{y}_{0}}^{2}}{{{x}_{0}}^{2}-9}=£¨\frac{3\sqrt{5}}{2}-m£©^{2}$£¬½âµÃm=$\frac{3\sqrt{5}}{2}¡À1$£®
¹ÊÒÔEFΪֱ¾¶µÄÔ²½»xÖáÓÚ¶¨µã£¬¸Ã¶¨µãµÄ×ø±êΪ$£¨\frac{3\sqrt{5}}{2}+1£¬0£©$»ò$£¨\frac{3\sqrt{5}}{2}-1£¬0£©$£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ¼òµ¥ÐÔÖÊ£¬¿¼²éÁËÖ±ÏßÓëÍÖԲλÖùØϵµÄÓ¦Ó㬿¼²é¼ÆËãÄÜÁ¦£¬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®ÒÑÖªÇøÓòE={£¨x£¬y£©|0¡Üx¡Ü3£¬0¡Üy¡Ü2}£¬F={£¨x£¬y£©|0¡Üx¡Ü3£¬0¡Üy¡Ü2£¬x¡Ýy}£¬ÈôÏòÇøÓòEÄÚËæ»úͶÖÀÒ»µã£¬Ôò¸ÃµãÂäÈëÇøÓòFÄڵĸÅÂÊΪ$\frac{2}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖªº¯Êý$f£¨x£©=sin£¨x+\frac{¦Ð}{3}£©£¬\;x¡ÊR$
£¨¢ñ£©Èç¹ûµã$P£¨\frac{3}{5}£¬\frac{4}{5}£©$ÊǽǦÁÖÕ±ßÉÏÒ»µã£¬Çóf£¨¦Á£©µÄÖµ£»
£¨¢ò£©Éèg£¨x£©=f£¨x£©+sinx£¬Çóg£¨x£©µÄµ¥µ÷ÔöÇø¼ä£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÒÑÖª¸´Êý$\frac{i}{1+ai}$Ϊ´¿ÐéÊý£¬ÄÇôʵÊýaµÄֵΪ£¨¡¡¡¡£©
A£®-1B£®0C£®1D£®2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÒÑÖªÍÖÔ²C£º$\frac{x^2}{25}+\frac{y^2}{b^2}=1£¨{0£¼b£¼5}£©$µÄ³¤Ö᳤¡¢¶ÌÖ᳤¡¢½¹¾à³ÉµÈ²îÊýÁУ¬Ôò¸ÃÍÖÔ²µÄ·½³ÌÊÇ£¨¡¡¡¡£©
A£®$\frac{x^2}{25}+\frac{y^2}{4}=1$B£®$\frac{x^2}{25}+\frac{y^2}{9}=1$C£®$\frac{x^2}{25}+\frac{y^2}{16}=1$D£®$\frac{x^2}{25}+{y^2}=1$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®Èô½¹µãÔÚxÖáÉϵÄÍÖÔ²$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{m}$=1µÄÀëÐÄÂÊΪ$\frac{1}{2}$£¬Ôòm=3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®ÒÑÖª$¦Á¡Ê£¨{\frac{¦Ð}{2}£¬\frac{3¦Ð}{2}}£©£¬tan£¨{¦Á-¦Ð}£©=-\frac{3}{4}$£¬Ôòsin¦Á+cos¦ÁµÄÖµÊÇ£¨¡¡¡¡£©
A£®$¡À\frac{1}{5}$B£®$\frac{1}{5}$C£®$-\frac{1}{5}$D£®$-\frac{7}{5}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÒÑÖªÕýÏîÊýÁÐ{an}ÖУ¬a1=2£¬$a_n^2-{a_n}{a_{n-1}}-2n{a_{n-1}}-4{n^2}=0$£¬£¨n¡Ý2£¬n¡ÊN£©
£¨1£©Ð´³öa2¡¢a3µÄÖµ£¨Ö»Ðëд½á¹û£©£»
£¨2£©Çó³öÊýÁÐ{an}µÄͨÏʽ£»
£¨3£©Éè${b_n}=\frac{1}{{{a_{n+1}}}}+\frac{1}{{{a_{n+2}}}}+\frac{1}{{{a_{n+3}}}}+¡­+\frac{1}{{{a_{2n}}}}$£¬Èô¶ÔÈÎÒâµÄÕýÕûÊýn£¬µ±m¡Ê[-1£¬1]ʱ£¬²»µÈʽ${t^2}-2mt+\frac{1}{6}£¾{b_n}$ºã³ÉÁ¢£¬ÇóʵÊýtµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®¼ÆË㣺$ln£¨{lg10}£©+\sqrt{{{£¨{¦Ð-4}£©}^2}}$=4-¦Ð£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸