精英家教网 > 高中数学 > 题目详情

【题目】一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图231所示.

图231

将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.

(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率;

(2)用X表示在未来3天里日销售量不低于100个的天数,求随机变量X的分布列,期望E(X)及方差D(X).

【答案】(1)0.108.(2) 见解析.

【解析】试题分析:(1)设表示事件日销售量不低于100表示事件日销售量低于50B表示事件在未来连续3天里有连续2天日销售量不低于100个且另一天的日销售量低于50”.因此

可求出,利用事件的独立性即可求出;(2)由题意可知X~B(3,0.6),所以即可列出分布列,求出期望为E(X)和方差DX)的值.

1)设表示事件日销售量不低于100表示事件日销售量低于50B表示事件在未来连续3天里有连续2天日销售量不低于100个且另一天的日销售量低于50”.因此

.

.

.

2X的可能取值为0,1,2,3.相应的概率为

,

,

,

,

分布列为

X

0

1

2

3

P

0.064

0.288

0.432

0.216

因为X~B(3,0.6),所以期望为E(X)=3×0.6=1.8,方差DX=3×0.6×1-0.6=0.72

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2|x+1|+|x﹣a|(a∈R).
(1)若 a=1,求不等式 f(x)≥5的解集;
(2)若函数f(x)的最小值为3,求实数 a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}的首项a1=1,且满足a2n+1=2a2n1与a2n=a2n1+1,则S20=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某互联网大会上,为了提升安全级别,将5名特警分配到3个重要路口执勤,每个人只能选择一个路口,每个路口最少1人,最多3人,且甲和乙不能安排在同一个路口,则不同的安排方法有(

A. 180 B. 150 C. 96 D. 114

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知一元二次函数的最大值为,其图象的对称轴为,且与轴两个交点的横坐标的平方和为.

1)求该一元二次函数;

2)要将该函数图象的顶点平移到原点,请说出平移的方式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数,则下列说法不正确的是( )

A.其图象开口向上,且始终与轴有两个不同的交点

B.无论取何实数,其图象始终过定点

C.其图象对称轴的位置没有确定,但其形状不会因的取值不同而改变

D.函数的最小值大于

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,已知为线段上的一点,且,则的最小值为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】, ,的内心,,其中,动点的轨迹所覆盖的面积为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,曲线处的切线方程为

(Ⅰ)求的解析式;

(Ⅱ)若对恒有成立,求的取值范围.

查看答案和解析>>

同步练习册答案