【题目】设,分别是椭圆C:的左、右焦点,过且斜率不为零的动直线l与椭圆C交于A,B两点.
Ⅰ求的周长;
Ⅱ若存在直线l,使得直线,AB,与直线分别交于P,Q,R三个不同的点,且满足P,Q,R到x轴的距离依次成等比数列,求该直线l的方程.
科目:高中数学 来源: 题型:
【题目】已知、分别是离心率为的椭圆:的左、右焦点,点是椭圆上异于其左、右顶点的任意一点,过右焦点作的外角平分线的垂线,交于点,且(为坐标原点).
(1)求椭圆的方程;
(2)若点在圆上,且在第一象限,过作圆的切线交椭圆于、两点,问:的周长是否为定值?如果是,求出该定值;如果不是,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,倾斜角为的直线的参数方程为.以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程是.
(1)写出直线的普通方程和曲线的直角坐标方程;
(2)已知点.若点的极坐标为,直线经过点且与曲线相交于,两点,求,两点间的距离的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 ( x R ,且 e 为自然对数的底数).
⑴ 判断函数 f x 的单调性与奇偶性;
⑵是否存在实数 t ,使不等式对一切的 x R 都成立?若存在,求出 t 的值,若 不存在说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分14分)某学校为了支持生物课程基地研究植物生长,计划利用学校空地建造一间室内面积为900m2的矩形温室,在温室内划出三块全等的矩形区域,分别种植三种植物,相邻矩形区域之间间隔1m,三块矩形区域的前、后与内墙各保留 1m 宽的通道,左、右两块矩形区域分别与相邻的左右内墙保留 3m 宽的通道,如图.设矩形温室的室内长为(m),三块种植植物的矩形区域的总面积为(m2).
(1)求关于的函数关系式;
(2)求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= ,若a,b,c互不相等,且f(a)=f(b)=f(c),则a+b+c的取值范围是( )
A. (1,2015)B. (1,2016)
C. [2,2 016]D. (2,2016)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某超市经营一批产品,在市场销售中发现此产品在30天内的日销售量P(件)与日期)之间满足,已知第5日的销售量为55件,第10日的销售量为50件。
(1)求第20日的销售量; (2)若销售单价Q(元/件)与的关系式为,求日销售额的最大值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆:的离心率为,长轴端点与短轴端点间的距离为.
(I)求椭圆的方程;
(II)设过点 的直线与椭圆交于两点,为坐标原点,若为直角三角形,求直线的斜率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com