精英家教网 > 高中数学 > 题目详情
设f(x)与g(x)是定义在同一区间[a,b]上的两个函数,若函数y=f(x)-g(x)在x∈[a,b]上有两个不同的零点,则称f(x)和g(x)在[a,b]上是“关联函数”,区间[a,b]称为“关联区间”.若f(x)=x2-3x+4与g(x)=2x+m在[0,3]上是“关联函数”,则m的取值范围
(-
9
4
,-2]
(-
9
4
,-2]
分析:由题意可得h(x)=f(x)-g(x)=x2-5x+4-m 在[0,3]上有两个不同的零点,故有
h(0)≥0
h(3)≥0
h(
5
2
)<0
,由此求得m的取值范围.
解答:解:∵f(x)=x2-3x+4与g(x)=2x+m在[0,3]上是“关联函数”,
故函数y=h(x)=f(x)-g(x)=x2-5x+4-m在[0,3]上有两个不同的零点,
故有
h(0)≥0
h(3)≥0
h(
5
2
)<0
,即 
4-m≥0
-2-m≥0
25
4
-
25
2
+4-m<0
,解得-
9
4
<m≤-2,
故答案为 (-
9
4
,-2]
点评:本题考查函数零点的判定定理,“关联函数”的定义,二次函数的性质,体现了转化的数学思想,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)与g(x)是定义在同一区间[a,b]上的两个函数,若对任意x∈[a,b],都有|f(x)-g(x)|≤1成立,则称f(x)和g(x)在[a,b]上是“紧密函数”.若f(x)=x2-3x+2与g(x)=mx-1在[1,2]上是“紧密函数”,则m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)与g(x)是定义在同一区间[a,b]上的两个函数,若对任意x∈[a,b],都有|f(x)-g(x)|≤1成立,则称f(x)和g(x)在[a,b]上是“亲密函数”,区间[a,b]称为“亲密区间”.若f(x)=x2-3x+4与g(x)=2x-1在[a,b]上是“亲密函数”,则b-a的最大值是
1
1

查看答案和解析>>

科目:高中数学 来源:2013届江西省四校度高二下学期期末联考理科数学试卷(解析版) 题型:选择题

设f(x)与g(x)是定义在同一区间[a,b]上的两个函数,若对任意x∈[a,b],

都有|f(x)-g(x)|≤1成立,则称f(x)和g(x)在[a,b]上是“紧密函数”.若

与g(x)=mx-1在[1,2]上是“紧密函数”,则m的取值范围是(   )

A.[0,1]        B.[2,3]         C.[1,2]          D.[1,3]

 

查看答案和解析>>

科目:高中数学 来源:徐州模拟 题型:解答题

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为2
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案