精英家教网 > 高中数学 > 题目详情

(14分)已知数列满足, .

(Ⅰ)若,证明数列为等比数列,并求数列的通项公式;

(Ⅱ)若,是否存在实数,使得对一切恒成立?若存在,求出的取值范围,若不存在,说明理由;

    (Ⅲ)当时,证明.

解析:(Ⅰ)

         

              …………………………………6分

(Ⅱ)解法1:由,得

猜想时,一切恒成立.

①当时,成立.

②设时,,则由

=

时,

由①②知时,对一切,有.   ………………………………10分

解法2:假设

,可求

故存在,使恒成立.            …………………………………10分

(Ⅲ)证法1:

,由(Ⅱ)知

                                     …………………………………14分

证法2:

猜想.数学归纳法证明

①当时,成立

②假设当时,成立

由①②对成立,下同证法1。

                                            …………………………………14分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列满足a1=1,an+1=2an+1(n∈N*)
(1)求证:数列{an+1}是等比数列;
(2)求{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数F(x)=
3x-2
2x-1
,(x≠
1
2
)

(I)求F(
1
2013
)+F(
2
2013
)+F(
3
2013
)+…+F(
2012
2013
)

(II)已知数列满足a1=2,an+1=F(an),求数列{an}的通项公式;
(Ⅲ) 求证:a1a2a3…an
2n+1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•芜湖三模)已知数列满足a1+2a2+…+2n-1an=
n
2
(n∈N+).
(Ⅰ)求数列{an}的通项;
(Ⅱ)若bn=
n
an
,求数列{bn}的前n和Sn
(Ⅲ)求证Sn≥n2+2n-1

查看答案和解析>>

科目:高中数学 来源:2013届度吉林省吉林市高二上学期期末理科数学试卷 题型:选择题

已知数列满足,则此数列的通项等于

A.       B.        C.            D.

 

查看答案和解析>>

科目:高中数学 来源:2013届河北省高二第一学期期末考试理科数学试卷 题型:解答题

已知数列满足:

(Ⅰ)求

(Ⅱ)设,求数列的通项公式;

(Ⅲ)设,不等式恒成立时,求实数的取值范围.

 

查看答案和解析>>

同步练习册答案