分析 根据题意,AC为经过点P的圆的直径,而BD是与AC垂直的弦.因此算出PM的长,利用垂直于弦的直径的性质算出BD长,根据四边形的面积公式即可算出四边形ABCD的面积.
解答 解:∵圆的方程为(x-1)2+(y-1)2=9,
∴圆心坐标为M(1,1),半径r=3.
∵P(2,2)是该圆内一点,
∴经过P点的直径是圆的最长弦,且最短的弦是与该直径垂直的弦.
结合题意,得AC是经过P点的直径,BD是与AC垂直的弦.
∵|PM|=$\sqrt{(1-2)^{2}+(1-2)^{2}}$=$\sqrt{2}$,
∴由垂径定理,得|BD|=2$\sqrt{7}$.
因此,四边形ABCD的面积是S=$\frac{1}{2}$|AC|•|BD|=$\frac{1}{2}$×6×2$\sqrt{7}$=6$\sqrt{7}$.
故答案为6$\sqrt{7}$
点评 本题给出圆内一点P,求经过点P最长的弦与最短的弦构成的四边形的面积.着重考查了圆的标准方程、两点间的距离公式和垂直于弦的直径的性质等知识,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 3或$\sqrt{41}$ | B. | 3 | C. | $\sqrt{41}$ | D. | ±3或$±\sqrt{41}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{π}{12}$ | B. | $\frac{5π}{12}$ | C. | $\frac{π}{6}$ | D. | $\frac{π}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 2$\sqrt{3}$ | B. | 4$ | C. | $\frac{\sqrt{3}}{2}$ | D. | $\frac{2\sqrt{3}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{2}$ | B. | $\frac{2}{3}$ | C. | $\frac{3}{4}$ | D. | $\frac{5}{6}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com