精英家教网 > 高中数学 > 题目详情

已知函数为偶函数,其图象上相邻的两个最低点间的距离为
(1)求的解析式;
(2)若的值.

(1);(2).

解析试题分析:(1)函数为偶函数,所以,相邻图像的两个最低点间的距离为一个周期,所以可以求出的值,即可求出函数的解析式;
(2)由已知,,代入求值.
解:(1)因为周期为所以,又因为为偶函数,
所以,则.             6分
(2)因为,又,所以
又因为.   13分
考点:1.三角函数的图像;2.三角函数的求值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数直线图像的任意两条对称轴,且的最小值为
求函数的单调增区间;
(2)求使不等式的取值范围.
(3)若的值;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求函数的最小正周期;
(2)当时,求函数的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的部分图象如图所示.
(1)求函数的解析式,并写出 的单调减区间;
(2)已知的内角分别是A,B,C,角A为锐角,且的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数是实数常数)的图像上的一个最高点,与该最高点最近的一个最低点是
(1)求函数的解析式及其单调增区间;
(2)在锐角三角形△ABC中,角A、B、C所对的边分别为,且,角A的取值范围是区间M,当时,试求函数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,
(l)求函数的最小正周期;
(2)当时,求函数f(x)的单调区间。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数f(x)=Asin(ωx-)+1(A>0,ω>0)的最大值为3,其图象相邻两条对称轴之间的距离为.
(1)求函数f(x)的解析式;
(2)设α∈(0,),f()=2,求α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量,函数的最小正周期为.
(1)求的值;
(2)设的三边满足:,且边所对的角为,若关于的方程有两个不同的实数解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量,定义函数f(x)=·.
(1)求函数f(x)的表达式,并指出其最大值和最小值;
(2)在锐角△ABC中,角ABC的对边分别为abc,且f(A)=1,bc=8,求△ABC的面积S.

查看答案和解析>>

同步练习册答案