精英家教网 > 高中数学 > 题目详情

【题目】函数

(Ⅰ)讨论的极值点的个数;

(Ⅱ)若对于,总有.(i)求实数的范围; (ii)求证:对于,不等式成立.

【答案】见解析.

【解析】【试题分析】(Ⅰ)先运用求导法则求函数的导数,再分类进行探求; (Ⅱ)先将不等式进行等价转化,再构造函数借助导数的有关知识进行推证:

(Ⅰ)解法一:由题意得, 令

(1)当,即时,恒成立

恒成立,此时没有极值点;…………2分

(2)当,即

时,设方程两个不同实根为,不妨设

,故

;在

是函数的两个极值点.

时,设方程两个不同实根为

,故

时,;故函数没有极值点. ……………………………4分

综上,当时,函数有两个极值点;

时,函数没有极值点. ………………………………………5分

解法二:, …………………………………………1分

,

,即时,恒成立,单调增,没有极值点; ……………………………………………………………3分

②当,即时,方程有两个不等正数解

不妨设,则当时,增;时,减;时,增,所以分别为极大值点和极小值点,有两个极值点.

综上所述,当时,没有极值点;

时,有两个极值点. ………………………………5分

(Ⅱ)(i

,即对于恒成立,设

时,减,时,增,

……………………………………9分

ii)由(i)知,当时有,即:……①当且仅当时取等号, ……………………………10分

以下证明:,设

减,增,

……②当且仅当时取等号;

由于①②等号不同时成立,故有.……………………………12分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】

.

(1)求

处的切线方程;

(2)令

,求

的单调区间;

(3)若任意

,都有

恒成立,求实数

的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若定义在R上的函数满足,且当时, ,则函数在区间[-7,1]上的零点个数为( )

A. 4 B. 6 C. 8 D. 10

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy上取两个定点 再取两个动点,且

(Ⅰ)求直线交点M的轨迹C的方程;

(Ⅱ)过的直线与轨迹C交于P,Q,过P轴且与轨迹C交于另一点NF为轨迹C的右焦点,若,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将圆上每一点的纵坐标不变,横坐标变为原来的,得曲线C.

)写出C的参数方程;

)设直线l C的交点为P1P2,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求过线段P1 P2的中点且与l垂直的直线的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】空气质量指数(,简称)是定量描述空气质量状况的无量纲指数,参与空气质量评价的主要污染物为等六项.空气质量按照大小分为六级:一级为优;二级为良好;三级为轻度污染;四级为中度污染;五级为重度污染;六级为严重污染.

某人根据环境监测总站公布的数据记录了某地某月连续10天的茎叶图如图所示:

1)利用访样本估计该地本月空气质量优良()的天数;(按这个月总共30天计算);

(2)若从样本中的空气质量不佳()的这些天中,随机地抽取三天深入分析各种污染指标,求这三天的空气质量等级互不相同的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在上的函数满足对任意,恒有,且不恒为0.

(1)求的值;

(2)试判断的奇偶性,并加以证明;

(3)若,恒有,求满足不等式的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,曲线在点处的切线与直线垂直.

1)求的值;

(2)若对于任意的恒成立,求的取值范围;

(3)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥SABC中,平面SAB⊥平面SBCABBCASAB.AAFSB,垂足为F,点EG分别是棱SASC的中点.

求证:(1)平面EFG∥平面ABC

(2)BCSA.

查看答案和解析>>

同步练习册答案