【题目】已知,设.
(1)若图象中相邻两条对称轴间的距离不小于,求的取值范围;
(2)若的最小正周期为,且当时,的最大值是,求的解析式,并说明如何由的图象变换得到的图象.
【答案】(1);(2);平移变换过程见解析.
【解析】
(1)根据平面向量的坐标运算,表示出的解析式,结合辅助角公式化简三角函数式.结合相邻两条对称轴间的距离不小于及周期公式,即可求得的取值范围;
(2)根据最小正周期,求得的值.代入解析式,结合正弦函数的图象、性质与的最大值是,即可求得的解析式.再根据三角函数图象平移变换,即可描述变换过程.
∵
∴
∴
(1)由题意可知,
∴
又,
∴
(2)∵,
∴
∴
∵,
∴
∴当即时
∴
∴
将图象上所有点向右平移个单位,得到的图象;再将得到的图象上所有点的横坐标变为原来的倍,纵坐标不变,得到的图象(或将图象上所有点的横坐标变为原来的倍,纵坐标不变,得到的图象;再将得到的图象上所有点向右平移个单位,得到的图象)
科目:高中数学 来源: 题型:
【题目】为了了解人们对“延迟退休年龄政策”的态度,某部门从网年龄在15~65岁的人群中随机调查100人,调查数据的频率分布直方图和支持“延迟退休”的人数与年龄的统计结果如下:
(I)由频率分布直方图估计年龄的众数和平均数;
(II)由以上统计数据填2×2列联表,并判断是否有95%的把握认为以45岁为分界点的不同人群对“延迟退休年龄政策”的支持度有差异;
参考数据:
(III)若以45岁为分界点,从不支持“延迟退休”的人中按分层抽样的方法抽取8人参加某项活动.现从这8人中随机抽2人.求抽到的2人中1人是45岁以下,另一人是45岁以上的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数,其中x>0,k为常数,e为自然对数的底数.
(1)当k≤0时,求的单调区间;
(2)若函数在区间(1,3)上存在两个极值点,求实数k的取值范围;
(3)证明:对任意给定的实数k,存在(),使得在区间(,)上单调递增.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】命题:方程表示焦点在轴上的双曲线:命题:若存在,使得成立.
(1)如果命题是真命题,求实数的取值范围;
(2)如果“”为假命题,“”为真命题,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线:,:,则下面结论正确的是( )
A. 把上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线
B. 把上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线
C. 把上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线
D. 把上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设,是函数的图象上任意两点,若为,的中点,且的横坐标为.
(1)求;
(2)若,,求;
(3)已知数列的通项公式(,),数列的前项和为,若不等式对任意恒成立,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设f(x)是定义在实数集R上的函数,且y=f(x+1)是偶函数,当x≥1时,f(x)=2x﹣1,则f(),f(),f()的大小关系是( )
A. f()<f()<f() B. f()<f()<f()
C. f()<f()<f() D. f()<f()<f()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列说法:①方程表示的图形是一个点;②命题“若,则或”为真命题;③已知双曲线的左右焦点分别为,,过右焦点被双曲线截得的弦长为4的直线有3条;④已知椭圆上有两点,,若点是椭圆上任意一点,且,直线,的斜率分别为,,则为定值.
其中说法正确的序号是________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com