精英家教网 > 高中数学 > 题目详情
11.O是坐标原点,点A(-1,1),点P(x,y)为平面区域$\left\{\begin{array}{l}{x≥0}\\{2x-y≤0}\\{y≤kx+1}\end{array}\right.$的一个动点,函数f(λ)=|$\overrightarrow{OP}$-λ$\overrightarrow{OA}$|(λ∈R)的最小值为M,若M≤$\frac{3}{2}$$\sqrt{2}$恒成立,则k的取值范围是(  )
A.k≤1B.-1≤k≤1C.0≤k≤3D.k≤1或≥3

分析 画出满足条件的可行域,分析出函数f(λ)的最小值为M≤$\frac{3}{2}$$\sqrt{2}$恒成立表示可行域内的点到直线OA:x+y=0的最大距离不大于$\frac{3}{2}$$\sqrt{2}$,结合可行域的图象,分类讨论,可得答案.

解答 解:满足约束条件$\left\{\begin{array}{l}x≥0\\ 2x-y≤0\\ y≤kx+1\end{array}\right.$的可行域如下图所示:

函数f(λ)=|$\overrightarrow{OP}$-λ$\overrightarrow{OA}$|(λ∈R)表示P点到直线OA上一点的距离,
若函数f(λ)的最小值为M≤$\frac{3}{2}$$\sqrt{2}$恒成立,
则仅需可行域内的点到直线OA:x+y=0的最大距离不大于$\frac{3}{2}$$\sqrt{2}$即可,
若k≥2,则不存在满足条件的点,
若k<2,则存在B点($\frac{1}{2-k}$,$\frac{2}{2-k}$)到直线OA:x+y=0的距离最远,
此时d=$\frac{\left|\frac{3}{2-k}\right|}{\sqrt{2}}$≤$\frac{3}{2}$$\sqrt{2}$,
解得:k≤1,
故选:A

点评 本题考查了简单的线性规划,考查了数形结合的解题思想方法及分类讨论的数学思想方法,关键是对题意的理解,是难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知椭圆E的中心在原点,焦点在x轴上,焦距为2$\sqrt{2}$,左顶点和上、下顶点连接成的三角形为正三角形.
(1)求椭圆E的方程:
(2)若对于点M(m,0),存在x轴上的另外-点N,使得过点N的任意直线l,当l与椭圆E交于相异两点P,Q时.$\overrightarrow{MP}•\overrightarrow{MQ}$为定值.求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.若函数f(x)为奇函数,周期为$\frac{π}{2}$,$f(\frac{π}{3})=1$,求$f(\frac{7π}{6})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.命题p:?x∈R,使2x>x;命题q:?x∈(0,$\frac{π}{2}$),0<sinx<1,下列是真命题的是(  )
A.p∧(¬q)B.(¬p)∨(¬q)C.p∨(¬q)D.(¬p)∧q

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若过点P(5,-2)的双曲线的两条渐近线方程为x-2y=0和x+2y=0,则该双曲线的实轴长为6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=2cos2x+2sinxcosx-1,
(1)求f(x)的最小正周期;
(2)求f(x)在区间$[{-\frac{π}{4},\frac{π}{6}}]$上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.《九章算术》是我国古代数学成就的杰出代表.其中《方田》章给出计算弧田面积所用的经验公式为:弧田面积=$\frac{1}{2}$(弦×矢+矢2).弧田,由圆弧和其所对弦所围成.公式中“弦”指圆弧对弦长,“矢”等于半径长与圆心到弦的距离之差,按照上述经验公式计算所得弧田面积与实际面积之间存在误差.现有圆心角为$\frac{2}{3}$π,弦长等于9米的弧田.按照《九章算术》中弧田面积的经验公式计算所得弧田面积与实际面积的差为$\frac{27\sqrt{3}}{2}$+$\frac{27}{8}$-9π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.以下向量中,可以作为直线$|{\begin{array}{l}1&0&1\\ x&2&1\\ y&1&1\end{array}}|=0$的一个方向向量是(  )
A.$\overrightarrow d=({1,-2})$B.$\overrightarrow d=({1,2})$C.$\overrightarrow d=({-2,1})$D.$\overrightarrow d=({2,1})$

查看答案和解析>>

同步练习册答案