【题目】根据教育部高考改革指导意见,广东省从2021年正式实施“”新的高考考试方案.为尽快了解学生的选科需求,及时调整学校人力资源配备.某校从高一学生中抽样调查了100名同学,在模拟分科选择中,一半同学(其中男生38人)选择了物理,另一半(其中男生14人)选择了历史.请完成以下列联表,并判断能否有99.9%的把握说选科与性别有关?
参考公式:,其中为样本容量.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | ||||
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 | ||||
选物理 | 选历史 | 总计 | ||||||||
男生 | ||||||||||
女生 | ||||||||||
总计 | ||||||||||
科目:高中数学 来源: 题型:
【题目】已知在四棱锥P-ABCD中,底面ABCD是矩形,且,,平面ABCD,E,F分别是线段AB、BC的中点.
(1)证明:;
(2)点G在线段PA上,且平面PFD,求
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线C的参数方程为为参数.在以原点为极点,为参数).在以原点为极点,轴的正半轴为极轴的极坐标系中,直线的极坐标方程为.
(Ⅰ)求曲线C的普通方程和直线的直角坐标方程;
(Ⅱ)设,直线与曲线C交于M,N两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知为坐标原点,圆,定点,点是圆上一动点,线段的垂直平分线交圆的半径于点,点的轨迹为.
(1)求曲线的方程;
(2)已知点是曲线上但不在坐标轴上的任意一点,曲线与轴的焦点分别为,直线和分别与轴相交于两点,请问线段长之积是否为定值?如果还请求出定值,如果不是请说明理由;
(3)在(2)的条件下,若点坐标为(-1,0),设过点的直线与相交于两点,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线的极坐标方程是,以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程是 (为参数).
(1)将曲线的极坐标方程化为直角坐标方程;
(2)若直线与曲线相交于两点,且,求直线的倾斜角的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设(e为自然对数的底数),.
(I)记.
(i)讨论函数单调性;
(ii)证明当时,恒成立
(II)令,设函数G(x)有两个零点,求参数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com