精英家教网 > 高中数学 > 题目详情
10.设F1,F2分别是短轴长为6的椭圆E:$\frac{x^2}{a^2}$+${\frac{y}{b^2}^2}$=1(a>b>0)的左、右焦点,过点F1的直线交椭圆E于A,B两点,且△ABF2的周长为16.
(1)求椭圆的标准方程;
(2)点P为E上一点,若PF1=3,求PF2的长度.

分析 (1)求得椭圆的a=4,由椭圆的定义可得,|CF1|+|CF2|=|DF1|+|DF2|=2a,即可得到周长为4a,计算即可得到所求;
(2)由椭圆的定义可得|PF1|+|PF2|=2a=8,计算即可得到PF2的长度.

解答 解:(1)由题意可得椭圆E:$\frac{x^2}{a^2}$+${\frac{y}{b^2}^2}$=1的b=3,
由椭圆的定义可得,|AF1|+|AF2|=|BF1|+|BF2|=2a,
即有△F2AB的周长为|AB|+|AF2|+|BF2|
=(|AF1|+|AF2|)+(|BF1|+|BF2|)=4a=16.解得a=4,
则椭圆方程为$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{9}$=1;
(2)点P为E上一点,若|PF1|=3,
由椭圆的定义可得|PF1|+|PF2|=2a=8,
即有|PF2|=8-|PF1|=8-3=5.
则PF2的长度为5.

点评 本题考查椭圆的定义和方程,主要考查定义法的运用,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=sin(x+$\frac{π}{6}$)+sin(x-$\frac{π}{6}$)+cosx+a(a∈R,a是常数),求函数f(x)的最小正周期.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.用lgx,lgy,lgz表示下列各式:
(1)lg$\frac{{x}^{\frac{1}{2}}{y}^{3}}{{z}^{-\frac{1}{2}}}$
(2)lg($\sqrt{x}•\root{5}{{y}^{3}}•{z}^{-1}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.解不等式组:$\left\{\begin{array}{l}{|x-3|≤5}\\{-{x}^{2}-x+6<0}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{4}{5}$,以其焦点为顶点,左右顶点为焦点的双曲线的渐近线方程为y=±$\frac{3}{4}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.用二分法求lnx+2x-6=0的近似解时,能确定为解所在的区间是(  )
A.(0,1)B.(0,2)C.(1,2)D.(2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数f(x)=log2x-$\frac{7}{x}$的零点包含于区间(  )
A.(1,2)B.(2,3)C.(3,4)D.(4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列函数中满足在(-∞,0)是单调递增的是(  )
A.f(x)=$\frac{1}{x+2}$B.f(x)=-(x+1)2C.f(x)=1+2x2D.f(x)=-|x|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=blnx-$\frac{1}{x}$,g(x)=-ax2+b,函数F(x)=$\frac{a+b}{b}f(x)-g(x)+\frac{a+b}{x}$(a,b∈R,且b≠0),曲线y=f(x)在点(1,f(1))处的切线与直线x+2y=0垂直.
(1)求b的值;
(2)讨论函数F(x)的单调性;
(3)设a≤-2,证明:对任意x1,x2∈(0,+∞),|F(x1)-F(x2)|≥4|x1-x2|

查看答案和解析>>

同步练习册答案