分析 (1)以点D为坐标原点O,DA,DC,DA1分别为x,y,z轴,建立空间直角坐标系,利用向量法能求出直线DC与平面ADB1所成角的大小.
(2)假设存在点P(a,b,c),使得二面角A-B1C1-P的大小为30°,利用向量法能求出棱AA1上存在一点P,使得二面角A-B1C1-P的大小为30°,且AP=2PA1.
解答 解:(1)∵四棱柱ABCD-A1B1C1D1中,A1D⊥平面ABCD,底面为边长为1的正方形,侧棱AA1=2,
∴以点D为坐标原点O,DA,DC,DA1分别为x,y,z轴,建立空间直角坐标系,…..(2分)
D(0,0,0),A(1,0,0),B1(0,1,$\sqrt{3}$),C(0,1,0),
$\overrightarrow{DA}=(1,0,0)$,$\overrightarrow{D{B}_{1}}$=(0,1,$\sqrt{3}$),$\overrightarrow{DC}$=(0,1,0),
设平面ADB1的法向量为$\overrightarrow{m}=(x,y,z)$,
则$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{DA}=x=0}\\{\overrightarrow{m}•\overrightarrow{D{B}_{1}}=y+\sqrt{3}z=0}\end{array}\right.$,取z=1,得$\overrightarrow{m}$=(0,-$\sqrt{3}$,1),…..(4分)
设直线DC与平面所ADB1成角为θ,
则sinθ=|cos<$\overrightarrow{DC},\overrightarrow{m}$>|=$\frac{|\overrightarrow{DC}•\overrightarrow{m}|}{|\overrightarrow{DC}|•|\overrightarrow{m}|}$=$\frac{\sqrt{3}}{2}$,
∵θ∈[0,$\frac{π}{2}$],∴θ=$\frac{π}{3}$,
∴直线DC与平面ADB1所成角的大小为$\frac{π}{3}$.…..(6分)
(2)假设存在点P(a,b,c),使得二面角A-B1C1-P的大小为30°,
设$\overrightarrow{AP}$=$λ\overrightarrow{P{A}_{1}}$,由A1(0,0,$\sqrt{3}$),得(a-1,b,c)=λ(-a,-b,$\sqrt{3}-c$),
∴$\left\{\begin{array}{l}{a-1=-aλ}\\{b=-bλ}\\{c=(\sqrt{3}-c)λ}\end{array}\right.$,解得$\left\{\begin{array}{l}{a=\frac{1}{λ+1}}\\{b=0}\\{c=\frac{\sqrt{3}λ}{1+λ}}\end{array}\right.$,
B1(0,1,$\sqrt{3}$),C1(-1,1,$\sqrt{3}$),$\overrightarrow{{B}_{1}{C}_{1}}$=(-1,0,0),$\overrightarrow{{B}_{1}P}$=($\frac{1}{1+λ}$,-1,-$\frac{\sqrt{3}}{1+λ}$),
设平面的法向量为$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{{B}_{1}{C}_{1}}=-x=0}\\{\overrightarrow{n}•\overrightarrow{{B}_{1}P}=\frac{1}{1+λ}x-y-\frac{\sqrt{3}}{1+λ}z=0}\end{array}\right.$,取z=1,得$\overrightarrow{n}$=(0,-$\frac{\sqrt{3}}{1+λ}$,1),….(9分)
由(1)知,平面AB1C1D的法向量为$\overrightarrow{m}$=(0,-$\sqrt{3}$,1),
∵二面角A-B1C1-P的大小为30°,
∴cos30°=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{|\frac{3}{1+λ}+1|}{2\sqrt{1+\frac{3}{(1+λ)^{2}}}}$=$\frac{\sqrt{3}}{2}$.
由λ>0,解得λ=2,
所以棱AA1上存在一点P,使得二面角A-B1C1-P的大小为30°,且AP=2PA1.
点评 本题考查线面角的大小的求法,考查满足条件的点的位置的确定与求法,是中档题,解题时要认真审题,注意向量法的合理运用.
科目:高中数学 来源: 题型:选择题
A. | $\frac{8}{17}$ | B. | $\frac{9}{17}$ | C. | $\frac{12}{17}$ | D. | $\frac{15}{17}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 25π | B. | 50π | C. | 125π | D. | 75π |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com