【题目】如图,正方形,直角梯形,直角梯形所在平面两两垂直, ,且, .
(1)求证: 四点共面;
(2)求二面角的余弦值.
【答案】(1)证明见解析;(2).
【解析】试题分析:(1)取的中点,连接,利用平行四边形可证明, ,根据平行的传递性,可得,从而四边形是平行四边形,问题得证;
(2)建立空间直角坐标系,利用坐标求平面的法向量,根据向量的夹角公式即可求出.
试题解析:
(1)证明:方法1:如图,
取的中点,连接,
∵在正方形中, , ,
在直角梯形中, , ,
∴, ,即四边形是平行四边形,
∴,
∵在直角梯形中, ,即四边形是平行四边形,
∴,
由上得,即四边形是平行四边形,
∴四点共面.
方法2:由正方形,直角梯形,直角梯形所在平面两两垂直,
易证: 两两垂直,建立如图所示的坐标系,则
∵,
∴,即四边形是平行四边形,
故四点共面.
(2)解:设平面的法向量为,
∵,
则令,则,
设平面的法向量为,且,
则 令,则,
∴设二面角的平面角的大小为,则.
科目:高中数学 来源: 题型:
【题目】已知等差数列的前n项和为, , ,数列满足: , , ,数列的前n项和为
(1)求数列的通项公式及前n项和;
(2)求数列的通项公式及前n项和;
(3)记集合,若M的子集个数为16,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= 为偶函数
(1)求实数a的值;
(2)记集合E={y|y=f(x),x∈{﹣1,1,2}},λ=lg22+lg2lg5+lg5﹣ ,判断λ与E的关系;
(3)当x∈[ , ](m>0,n>0)时,若函数f(x)的值域[2﹣3m,2﹣3n],求实数m,n值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2016年奥运会于8月5日在巴西里约热内卢举行,为了解某单位员工对奥运会的关注情况,对本单位部分员工进行了调查,得到平均每天看奥运会直播时间的茎叶图如下(单位:分钟),若平均每天看奥运会直播不低于70分钟的员工可以视为“关注奥运”,否则视为“不关注奥运”.
(1)试完成下面表格,并根据此数据判断是否有99.5%以上的把握认为是否“关注奥运会”与性别有关?
(2)若从参与调查且平均每天观看奥运会时间不低于110分钟的员工中抽取4人,用表示抽取的女员工数,求的分布列和期望值.
参考公式: ,其中
0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】不等式2x2﹣x﹣3>0解集为( )
A.{x|﹣1<x< }??
B.{x|x> 或x<﹣1}??
C.{x|﹣ <x<1}??
D.{x|x>1或x<﹣ }
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在如图所示的几何体中,四边形ABCD是等腰梯形,AB∥CD,∠DAB=60°,FC⊥平面ABCD,AE⊥BD,CB=CD=CF.
(Ⅰ)求证:BD⊥平面AED;
(Ⅱ)求二面角F﹣BD﹣C的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)= (0≤x≤10),若不建隔热层,每年能源消耗费用为8万元.设f(x)为隔热层建造费用与20年的能源消耗费用之和.
(1)求k的值及f(x)的表达式.
(2)隔热层修建多厚时,总费用f(x)达到最小,并求最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线 的两个焦点为
的曲线C上.
(1)求双曲线C的方程;
(2)记O为坐标原点,过点Q(0,2)的直线l与双曲线C相交于不同的两点E、F,若△OEF的面积为2 ,求直线l的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com