精英家教网 > 高中数学 > 题目详情
17.已知等比数列{an}的前n项和为Sn,且$\frac{{S}_{8}-{S}_{6}}{{S}_{6}-{S}_{4}}$=$\sqrt{2}$,则$\frac{{a}_{8}}{{a}_{4}}$=(  )
A.$\sqrt{2}$B.2C.4D.16

分析 化简已知式子可得q4=$\sqrt{2}$,而$\frac{{a}_{8}}{{a}_{4}}$=q4,代入可得答案.

解答 解:设等比数列{an}的公比为q,
则由题意可得$\frac{{S}_{8}-{S}_{6}}{{S}_{6}-{S}_{4}}$=$\frac{{a}_{7}{a}_{8}}{{a}_{5}{a}_{6}}$=q4=$\sqrt{2}$,
∴$\frac{{a}_{8}}{{a}_{4}}$=q4=$\sqrt{2}$,
故选:A

点评 本题考查等比数列的求和公式和通项公式,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.下列结论不正确的是(  )
A.$\left.\begin{array}{l}{A∈α}\\{a?α}\end{array}\right\}$⇒A∈αB.$\left.\begin{array}{l}{A∈α,A∈β}\\{α∩β=α}\end{array}\right\}$⇒A∈α
C.$\left.\begin{array}{l}{A∈α}\\{A∈β}\end{array}\right\}$⇒α∩β=AD.$\left.\begin{array}{l}{A∈α}\\{B∈α}\end{array}\right\}$⇒AB?α

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若实数a,b满足ab-4a-b+1=0(a>1),则(a+1)(b+2)的最小值为(  )
A.24B.25C.27D.30

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在正方体ABCD-A1B1C1D1中:
(1)分别给出直线AA1,BD的一个方向向量;
(2)分别给出平面ADD1A1,平面BB1D1D,平面AD1C的一个法向量.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.定义在R上的函数y=f(x),满足f(x+2)=-$\frac{1}{f(x)}$,则(  )
A.f(x)不是周期函数B.f(x)是周期函数,且最小正周期为2
C.f(x)是周期函数,且最小正周期为4D.f(x)是周期函数,且4是它的一个周期

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设f(x)是定义在R上的偶函数f(x)+f(2-x)=0.当x∈[0,1]时f(x)=x2-1,若关于x的方程f(x)-kx=0恰有三个不同的实数解,则正实数k的取值范围是(  )
A.(5-2$\sqrt{6}$,4-$\sqrt{13}$)B.(8-2$\sqrt{15}$,4-2$\sqrt{3}$)C.(5-2$\sqrt{6}$,4-2$\sqrt{3}$)D.(8-2$\sqrt{15}$,4-$\sqrt{13}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.直线ax+by+c=0(a、b∈R)与圆x2+y2=1交于不同的两点A、B,若$\overrightarrow{OA}$•$\overrightarrow{OB}$=-$\frac{1}{2}$,其中O为坐标原点,则|AB|=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知$\frac{1}{2}lo{g}_{8}a+lo{g}_{4}b=\frac{5}{2}$,log8b+log4a2=7,求ab.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.写出原命题“已知集合A,B,若A∪B≠B,则A不是B的子集”的逆命题、否命题、逆否命题,分别判断四种命题的真假.

查看答案和解析>>

同步练习册答案