精英家教网 > 高中数学 > 题目详情
17.已知函数f(x)=$\left\{\begin{array}{l}{(4-a)x-8,x≤6}\\{{a}^{x-5},x>6}\end{array}\right.$,若数列{an}满足an=f(n)(n∈N*),且{an}是递增数列,则实数a的取值范围是(  )
A.[$\frac{16}{7}$,4)B.($\frac{16}{7}$,4)C.(2,4)D.(1,4)

分析 函数f(x)=$\left\{\begin{array}{l}{(4-a)x-8,x≤6}\\{{a}^{x-5},x>6}\end{array}\right.$,数列{an}满足an=f(n)(n∈N*),且{an}是递增数列,可得$\left\{\begin{array}{l}{4-a>0}\\{1<a}\\{6(4-a)-8<{a}^{2}}\end{array}\right.$,解出即可得出.

解答 解:函数f(x)=$\left\{\begin{array}{l}{(4-a)x-8,x≤6}\\{{a}^{x-5},x>6}\end{array}\right.$,数列{an}满足an=f(n)(n∈N*),且{an}是递增数列,
∴$\left\{\begin{array}{l}{4-a>0}\\{1<a}\\{6(4-a)-8<{a}^{2}}\end{array}\right.$,
解得2<a<4.
故选:C.

点评 本题考查了函数与数列的单调性、不等式的解法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.已知水池的长为30m,宽为20m,一海豚在水池中自由游戏,则海豚嘴尖离池边超过4m的概率为$\frac{11}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=xlnx.
(1)求函数y=f(x)的单调区间;
(2)若函数g(x)=lnx-$\frac{a}{x}$有两个零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=2sin(2ωx+$\frac{π}{6}$)+1(其中0<ω<1),若点(-$\frac{π}{6}$,1)是函数f(x)图象的一个对称中心.
(Ⅰ)试求函数f(x)的解析式;
(Ⅱ)求函数f(x)在区间[-π,π]上的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数y=f(x)(x∈R)且在[0,+∞)上是增函数,g(x)=f(|x|),若g(2x-1)<g(2),则x的取值范围是(  )
A.(-$\frac{1}{2}$,$\frac{3}{2}$)B.(-∞,$\frac{3}{2}$)C.($\frac{3}{2}$,+∞)D.(-∞,$-\frac{1}{2}$)∪($\frac{3}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若对函数y=f(x)定义域内的每一个值x1,都存在唯一的值x2,使得f(x1)f(x2)=1成立,则称此函数为“黄金函数”,给出下列四个函数:①y=$\frac{1}{x}$;②y=log2x;③y=($\frac{1}{2}$)x;④y=x2,其中是“黄金函数”的序号是①③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设全集U={1,2,3,4,5,6},集合A={1,3,5},B={4,5,6},则(∁UA)∩B=(  )
A.{2}B.{2,4}C.{4,6}D.{2,4,6}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知幂函数f(x)的图象过点(2,16),则f($\sqrt{3}$)=9.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若函数f(x)=(x-b)lnx(b∈R)在区间[1,e]上单调递增,则实数b的取值范围是(-∞,1].

查看答案和解析>>

同步练习册答案