精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱锥中,四边形为平行四边形,,点在线段上,,点在线段

(1)证明:平面

(2)若平面平面,求直线与平面所成角的正弦值.

【答案】(1)证明见解析(2)

【解析】

(1)首先在上取点,使,连接,根据已知条件得到,且,且,从而得到,四边形是平行四边形,即,再利用线面平行的判定即可证明.

2)首先取的中点,连接,根据,得到.利用面面垂直的性质得到平面,从而得到,再利用线面垂直的性质即可证明平面,从而得到即为直线与平面所成的角,再计算其正弦值即可.

(1)在上取点,使,连接

如图所示:

因为,所以

所以,且.

又因为,所以,且.

所以,四边形是平行四边形,所以.

又因为平面平面,所以平面.

2)取的中点,连接,如图所示:

因为,则

因为

所以.

,所以.

又因为平面平面

所以平面,所以.

又因为

所以平面

所以即为直线与平面所成的角.

因为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列的前n项和为.数列为非负的等比数列,且满足

(Ⅰ)求数列的通项公式;

(Ⅱ)若数列的前n项和为,求数列的前n项和

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图(如图①)、90后从事互联网行业岗位分布条形图(如图②),则下列结论中不一定正确的是( )

注:90后指1990年及以后出生,80后指1980~1989年之间出生,80前指1979年及以前出生.

A.互联网行业从业人员中90后占一半以上

B.互联网行业中从事技术岗位的人数超过总人数的20%

C.互联网行业中从事运营岗位的人数90后比80前多

D.互联网行业中从事技术岗位的人数90后比80后多

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图已知分別为的中点,将沿折起,得到四棱锥的中点.

1)证明:平面

2)当正视图方向与向量的方向相同时,的正视图为直角三角形,求此时二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】新型冠状病毒蔓延以来,世界各国都在研制疫苗,某专家认为,某种抗病毒药品对新型冠状病毒具有抗病毒、抗炎作用,假如规定每天早上700和晚上700各服药一次,每次服用该药药量700毫克具有抗病毒功效,若人的肾脏每12小时从体内滤出这种药的70%,该药在人体内含量超过1000毫克,就将产生副作用,若人长期服用这种药,则这种药__________(填“会”或者“不会”)对人体产生副作用.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为为椭圆上任意一点,当时,的面积为,且.

1)求椭圆的方程;

2)已知直线经点,与椭圆交于不同的两点,且,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数在其定义域内有两个不同的极值点.

1)求的取值范围;

2)设两极值点分别为,且,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论的单调性;

2)讨论上的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,且经过点,两个焦点分别为.

1)求椭圆的方程;

2)过的直线与椭圆相交于两点,若的内切圆半径为,求以为圆心且与直线相切的圆的方程.

查看答案和解析>>

同步练习册答案