精英家教网 > 高中数学 > 题目详情
20.已知平面向量$\overrightarrow a,\overrightarrow b,\overrightarrow c$满足$\overrightarrow c=x\overrightarrow a+y\overrightarrow b$(x,y∈R),且$\overrightarrow a•\overrightarrow c>0$,$\overrightarrow b•\overrightarrow c>0$.(  )
A.若$\overrightarrow a•\overrightarrow b<0$,则x>0,y>0B.若$\overrightarrow a•\overrightarrow b<0$,则x<0,y<0
C.若$\overrightarrow a•\overrightarrow b>0$,则x<0,y<0D.若$\overrightarrow a•\overrightarrow b>0$,则x>0,y>0

分析 运用排除法解决,由$\overrightarrow{a}$•$\overrightarrow{c}$>0,$\overrightarrow{b}$•$\overrightarrow{c}$>0,若$\overrightarrow{a}$•$\overrightarrow{b}$<0,可举$\overrightarrow{a}$=(1,1),$\overrightarrow{b}$=(-2,1),$\overrightarrow{c}$=(0,1),加以验证;若$\overrightarrow{a}$•$\overrightarrow{b}$>0,可举$\overrightarrow{a}$=(1,0),$\overrightarrow{b}$=(2,1),$\overrightarrow{c}$=(1,1),加以验证,即可得到答案.

解答 解:作为选择题,可运用排除法.
由$\overrightarrow{a}$•$\overrightarrow{c}$>0,$\overrightarrow{b}$•$\overrightarrow{c}$>0,若$\overrightarrow{a}$•$\overrightarrow{b}$<0,
可举$\overrightarrow{a}$=(1,1),$\overrightarrow{b}$=(-2,1),$\overrightarrow{c}$=(0,1),
则$\overrightarrow{a}$•$\overrightarrow{c}$=1>0,$\overrightarrow{b}$•$\overrightarrow{c}$=1>0,$\overrightarrow{a}$•$\overrightarrow{b}$=-1<0,
由$\overrightarrow{c}$=x$\overrightarrow{a}$+y$\overrightarrow{b}$,即有0=x-2y,1=x+y,解得x=$\frac{2}{3}$,y=$\frac{1}{3}$,
则可排除B;
若$\overrightarrow{a}$•$\overrightarrow{b}$>0,
可举$\overrightarrow{c}$=(1,0),$\overrightarrow{b}$=(2,1),$\overrightarrow{c}$=(1,1),
则$\overrightarrow{a}$•$\overrightarrow{c}$=1>0,$\overrightarrow{b}$•$\overrightarrow{c}$=3>0,$\overrightarrow{a}$•$\overrightarrow{b}$=2>0,
由$\overrightarrow{c}$=x$\overrightarrow{a}$+y$\overrightarrow{b}$,即有1=x+2y,1=y,解得x=-1,y=1,
则可排除C,D.
故选:A.

点评 本题考查向量的数量积的坐标表示和平面向量基本定理的运用,作为选择题运用排除法是解题的关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.下列说法正确的是(  )
A.sin($\frac{π}{3}$)<0B.cos(-80°)<0C.tan200°>0D.cos0°=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在区间[0,3]上随机地取一个数x,则事件“-1≤log${\;}_{\frac{1}{2}}$(x+$\frac{1}{2}$)≤1”发生的概率为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.从抛物线x2=4y上一点P引抛物线准线的垂线,垂足为M,且|PM|=5,设抛物线的焦点为F,则三角形MPF的面积为10.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知f(x)=ex-x,g(x)=lnx+x+1,命题p:?x∈R,f(x)>0,命题q:?x0∈(0,+∞),使得g(x0)=0,则下列说法正确的是(  )
A.p是真命题,¬p:?x0∈R,f(x0)<0B.p是假命题,¬p:?x0∈R,f(x0)≤0
C.q是真命题,¬q:?x∈(0,+∞),g(x)≠0D.q是假命题,¬q:?x∈(0,+∞),g(x)≠0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知a>0,a≠1且loga3>loga2,若函数f(x)=logax在区间[a,2a]上的最大值与最小值之差为1.
(1)求a的值;    
(2)求不等式${log_{\frac{1}{3}}}(x-1)>{log_{\frac{1}{3}}}$(a-x)的解集;
(3)设方程${log_{2a}}x={(\frac{1}{2a})^x}\;,\;{log_{\frac{1}{2a}}}x={(\frac{1}{2a})^x}$的根分别为x1,x2,求x1x2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知点P是边长为4的正方形内任一点,则点P到四个顶点的距离均大于2的概率是1$-\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.装里装有3个红球和1个白球,这些球除了颜色不同外,形状、大小完全相同.从中任意取出2个球,则取出的2个球恰好是1个红球、1个白球的概率等于(  )
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{3}{4}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.执行如图所示的程序框图,则输出的s的值为(  )
A.2B.3C.4D.5

查看答案和解析>>

同步练习册答案