精英家教网 > 高中数学 > 题目详情

【题目】设椭圆的左、右顶点分别为,上顶点为B,右焦点为F,已知直线的倾斜角为120°.

(1)求椭圆C的方程;

(2)P为椭圆C上不同于的一点,O为坐标原点,线段的垂直平分线交M点,过M且垂直于的直线交y轴于Q点,若,求直线的方程.

【答案】(1)(2)

【解析】

1)利用直线的倾斜角、的值列方程,结合,求得的值,进而求得椭圆的方程.2)设出直线的方程,由此求得点坐标,由此求得直线的方程,进而求得点坐标,联立直线的方程和椭圆方程,求得点坐标,将转化为两条直线斜率乘积等于列方程,解方程求得直线的斜率,进而求得直线的方程.

解:(1)设焦距为2c,因为直线BF的倾斜角为120°,所以,即,又因为,所以,即,代入,并化简得,解得,所以,椭圆C的方程为.

2)设,直线的方程为,令,得,即,则,直线,令,得,联立方程组,并消去y,由,得,把代入,得,得.,则,同理,所以,解得,所以直线的方程为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知离心率为2的双曲线的一个焦点到一条渐近线的距离为.

(1)求双曲线的方程;

(2)设分别为的左右顶点,异于一点,直线分别交轴于两点,求证:以线段为直径的圆经过两个定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知|x|≤2,|y|≤2,P的坐标为(x,y).

(1)求当x,yR,P满足(x-2)2+(y-2)2≤4的概率.

(2)求当x,yZ,P满足(x-2)2+(y-2)2≤4的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1)已知实数,则的最小值是______

2)正项等比数列中,存在两项使得,且,则的最小值为______.

3)设正实数满足,则的最小值为_______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知菱形与直角梯形所在的平面互相垂直,其中的中点

(Ⅰ)求证:

(Ⅱ)求二面角的余弦值;

(Ⅲ)设为线段上一点,,若直线与平面所成角的正弦值为,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,且经过点

求椭圆的标准方程;

已知抛物线的焦点与椭圆的右焦点重合,过点的动直线与抛物线相交于AB两个不同的点,在线段AB上取点Q,满足,证明:点Q总在定直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知中心在原点的双曲线的右焦点为,右顶点为.

(1)求双曲线的方程;

(2)若直线与双曲线恒有两个不同的交点,且(其中为坐标原点),求实数取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若对于曲线f(x)=-exx(e为自然对数的底数)的任意切线l1,总存在曲线g(x)=ax+2cosx的切线l2,使得l1l2,则实数a的取值范围为________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数的图象向右平移个单位,在向上平移一个单位,得到g(x)的图象.若g(x1)g(x2)=4,且x1,x2∈[﹣2π,2π],则x1﹣2x2的最大值为(  )

A. B. C. D.

查看答案和解析>>

同步练习册答案