【题目】在平面直角坐标系中,对于点,若函数满足:,都有,就称这个函数是点A的“限定函数”.以下函数:①,②,③,④,其中是原点O的“限定函数”的序号是______.已知点在函数的图象上,若函数是点A的“限定函数”,则实数a的取值范围是______.
科目:高中数学 来源: 题型:
【题目】数列分别满足:,其中,其中,设数列前n项和分别为.
(1)若数列为递增数列,求数列的通项公式;
(2)若数列满足:存在唯一的正整数k(),使得,则称为“k坠点数列”
(Ⅰ)若数列为“6坠点数列",求;
(Ⅱ)若数列为“5坠点数列”,是否存在“p坠点数列”,使得,若存在,求正整数m的最大值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若数列满足,则称数列为“平方递推数列”.已知数列中,,点在函数的图象上,其中为正整数.
(1)证明数列是“平方递推数列”,且数列为等比数列;
(2)设(1)中“平方递推数列”的前项积为,即,求;
(3)在(2)的条件下,记,求数列的前项和,并求使的的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于数列,定义为的“优值”.现已知某数列的“优值”为 ,记数列的前项和为,若对一切的,都有恒成立,则实数的取值范围为___________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点,直线与抛物线交于不同两点、,直线、与抛物线的另一交点分别为两点、,连接,点关于直线的对称点为点,连接、.
(1)证明:;
(2)若的面积,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,函数在点处的切线斜率为0.
(1)试用含有的式子表示,并讨论的单调性;
(2)对于函数图象上的不同两点,,如果在函数图象上存在点,使得在点处的切线,则称存在“跟随切线”.特别地,当时,又称存在“中值跟随切线”.试问:函数上是否存在两点使得它存在“中值跟随切线”,若存在,求出的坐标,若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com