精英家教网 > 高中数学 > 题目详情

【题目】已知函数的最大值为,其图像相邻两条对称轴之间的距离为,且的图像关于点对称,则下列判断正确的是()

A. 函数上单调递增

B. 函数的图像关于直线对称

C. 时,函数的最小值为

D. 要得到函数的图像,只需要将的图像向右平移个单位

【答案】D

【解析】

根据题意求出函数fx)的解析式,再判断四个选项中的命题是否正确即可.

函数fx)=Asinωx)中,A,∴Tπω2

fx)的图象关于点(0)对称,∴ωx2×(kπ

解得φkπkZ,∴φ

fxsin2x);

对于Ax[]时,2x[]fx)是单调递减函数,错误.

对于Bx时,fsin2)=0fx)的图象不关于x对称,错误;

对于Cx[]时,2x[]sin2x)∈[1]fx)的最小值为C错误;

对于Dycos2x向右平移个单位,得ycos2xcos2x)的图象,

ycos2xcos2xsin2x),∴正确;

故选:D

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】 (n≥2)个实数组成的n行n列的数表中, 表示第i行第j列的数,记 -1,0,1} (),且r1,r2,…,rn,c1,c2,..,cn,两两不等,则称此表为“n阶H表”,记

H={ r1,r2,…,rn,c1,c2,..,cn}.

(I)请写出一个“2阶H表”;

(II)对任意一个“n阶H表”,若整数,且,求证: 为偶数;

(Ⅲ)求证:不存在“5阶H表”.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx=x+

1)若关于x的不等式f3x)≤m3x+2[-22]上恒成立.求实数m的取值范围;

2)若函数gx=f|2x-1|-3t-2有四个不同的零点,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若恒成立,求的取值范围;

(2)证明:不等式对于正整数恒成立,其中为自然对数的底数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了加强中学生实践、创新和团队建设能力的培养,促进教育教学改革,市教育局举办了全市中学生创新知识竞赛,某中学举行了选拔赛,共有150名学生参加,为了了解成绩情况,从中抽取50名学生的成绩(得分均为整数,满分为100分)进行统计,请你根据尚未完成的频率分布表,解答下列问题:

(1)完成频率分布表(直接写出结果);

(2)若成绩在90.5分以上的学生获一等奖,试估计全校获一等奖的人数,现在从全校所有获一等奖的同学中随机抽取2名同学代表学校参加竞赛,某班共有2名同学荣获一等奖,求该班同学恰有1人参加竞赛的概率.

分组

频数

频率

第1组

[60.5,70.5)

0.26

第2组

[70.5,80.5)

17

第3组

[80.5,90.5)

18

0.36

第4组

[90.5,100.5]

合计

50

1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,函数恰有两个不同的零点,求实数的值;

2)当时,

若对于任意,恒有,求的取值范围;

,求函数在区间上的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)

某企业生产AB两种产品,根据市场调查与预测,A产品的利润与投资成正比,其关系如图1B产品的利润与投资的算术平方根成正比,其关系如图2(注:利润和投资单位:万元)

(1)分别将AB两种产品的利润表示为投资的函数关系式;

(2)已知该企业已筹集到18万元资金,并将全部投入AB两种产品的生产.

若平均投入生产两种产品,可获得多少利润?

问:如果你是厂长,怎样分配这18万元投资,才能使该企业获得最大利润?其最大利润约为多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆(ab>0)的一个焦点与抛物线y2=4x的焦点F重合,且椭圆短轴的两个端点与点F构成正三角形.

(1)求椭圆的方程;

(2)若过点(1,0)的直线l与椭圆交于不同的两点PQ,试问在x轴上是否存在定点E(m,0),使恒为定值?若存在,求出E的坐标,并求出这个定值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线 ,过直线上任一点向抛物线引两条切线(切点为,且点轴上方).

(1)求证:直线过定点,并求出该定点;

(2)抛物线上是否存在点,使得

查看答案和解析>>

同步练习册答案