【题目】已知函数的最大值为,其图像相邻两条对称轴之间的距离为,且的图像关于点对称,则下列判断正确的是()
A. 函数在上单调递增
B. 函数的图像关于直线对称
C. 当时,函数的最小值为
D. 要得到函数的图像,只需要将的图像向右平移个单位
【答案】D
【解析】
根据题意求出函数f(x)的解析式,再判断四个选项中的命题是否正确即可.
函数f(x)=Asin(ωx+φ)中,A,,∴T=π,ω2,
又f(x)的图象关于点(,0)对称,∴ωx+φ=2×()+φ=kπ,
解得φ=kπ,k∈Z,∴φ;
∴f(x)sin(2x);
对于A,x∈[,]时,2x∈[,],f(x)是单调递减函数,错误.
对于B,x时,f()sin(2)=0,f(x)的图象不关于x对称,错误;
对于C,x∈[,]时,2x∈[,],sin(2x)∈[,1],f(x)的最小值为,C错误;
对于D,ycos2x向右平移个单位,得ycos2(x)cos(2x)的图象,
且ycos(2x)cos(2x)sin(2x),∴正确;
故选:D.
科目:高中数学 来源: 题型:
【题目】在 (n≥2)个实数组成的n行n列的数表中, 表示第i行第j列的数,记. 若{-1,0,1} (),且r1,r2,…,rn,c1,c2,..,cn,两两不等,则称此表为“n阶H表”,记
H={ r1,r2,…,rn,c1,c2,..,cn}.
(I)请写出一个“2阶H表”;
(II)对任意一个“n阶H表”,若整数,且,求证: 为偶数;
(Ⅲ)求证:不存在“5阶H表”.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x+.
(1)若关于x的不等式f(3x)≤m3x+2在[-2,2]上恒成立.求实数m的取值范围;
(2)若函数g(x)=f(|2x-1|)-3t-2有四个不同的零点,求实数t的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了加强中学生实践、创新和团队建设能力的培养,促进教育教学改革,市教育局举办了全市中学生创新知识竞赛,某中学举行了选拔赛,共有150名学生参加,为了了解成绩情况,从中抽取50名学生的成绩(得分均为整数,满分为100分)进行统计,请你根据尚未完成的频率分布表,解答下列问题:
(1)完成频率分布表(直接写出结果);
(2)若成绩在90.5分以上的学生获一等奖,试估计全校获一等奖的人数,现在从全校所有获一等奖的同学中随机抽取2名同学代表学校参加竞赛,某班共有2名同学荣获一等奖,求该班同学恰有1人参加竞赛的概率.
分组 | 频数 | 频率 | |
第1组 | [60.5,70.5) | 0.26 | |
第2组 | [70.5,80.5) | 17 | |
第3组 | [80.5,90.5) | 18 | 0.36 |
第4组 | [90.5,100.5] | ||
合计 | 50 | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分)
某企业生产A,B两种产品,根据市场调查与预测,A产品的利润与投资成正比,其关系如图1;B产品的利润与投资的算术平方根成正比,其关系如图2(注:利润和投资单位:万元).
(1)分别将A、B两种产品的利润表示为投资的函数关系式;
(2)已知该企业已筹集到18万元资金,并将全部投入A,B两种产品的生产.
①若平均投入生产两种产品,可获得多少利润?
②问:如果你是厂长,怎样分配这18万元投资,才能使该企业获得最大利润?其最大利润约为多少万元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆(a>b>0)的一个焦点与抛物线y2=4x的焦点F重合,且椭圆短轴的两个端点与点F构成正三角形.
(1)求椭圆的方程;
(2)若过点(1,0)的直线l与椭圆交于不同的两点P,Q,试问在x轴上是否存在定点E(m,0),使恒为定值?若存在,求出E的坐标,并求出这个定值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线 ,过直线:上任一点向抛物线引两条切线(切点为,且点在轴上方).
(1)求证:直线过定点,并求出该定点;
(2)抛物线上是否存在点,使得.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com