精英家教网 > 高中数学 > 题目详情
已知集合M是满足下列性质的函数f(x)的全体:在定义域内存在x0,使得f(x0+1)=f(x0)+f(1)成立.
(1)函数f(x)=
1
x
是否属于集合M?说明理由;
(2)设函数f(x)=2x+x2,证明:f(x)∈M.
考点:抽象函数及其应用,元素与集合关系的判断
专题:函数的性质及应用
分析:(1)集合M中元素的性质,即有f(x0+1)=f(x0)+f(1)成立,代入函数解析式列出方程,进行求解,若无解则此函数不是M的元素,若有解则此函数是M的元素;
(2)根据定义只要证明f(x+1)=f(x)+f(1)有解,把解析式代入列出方程,转化为对应的函数,利用函数的零点存在性判定理进行判断.
解答: 解:(1)f(x)=
1
x
的定义域为(-∞,0)∪(0,+∞),
1
x+1
=
1
x
+1,整理得x2+x+1=0,
∵△=-3<0,
∴x2+x+1=0无解,
因此,不存在x∈(-∞,0)∪(0,+∞),使得f(x+1)=f(x)+f(1)成立,
∴f(x)=
1
x
∉M
(2)∵函数f(x)=2x+x2∈M,要证f(x)∈M,
∴f(x+1)=f(x)+f(1)有解,
∴2x+1+(x+1)2=2x+x2+3有解,即2x+2x-2=0有解,
设h(x)=2x+2x-2,∵h(0)=-1,h(1)=2,
根据函数的零点存在性判定理得,存在x0∈(0,1),h(x0)=0,
即f(x0+1)=f(x0)+f(1)成立,
∴f(x)∈M.
点评:本题题意新颖,主要利用新定义进行运算,考查了对数函数、正弦函数和指数函数的性质,函数的零点存在性判定理的应用,综合性强、考查了逻辑思维能力和分析、解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等差数列{an}的前Sn项和为Sn,a1=3,{bn}为等比数列,且b1=1,bn>0,b2+S2=10,S5=5b3+3a2,n∈N*
(1)求数列{an},{bn}的通项公式;
(2)求数列{an•bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=alog2x+blog3x+2且f(
1
2015
)=4,则f(2015)的值为(  )
A、-4B、2C、0D、-2

查看答案和解析>>

科目:高中数学 来源: 题型:

等差数列{an}中,a3=0,Sn是数列{an}的前n项和,则下列式子成立的是(  )
A、S3=0
B、S4=0
C、S5=0
D、S9=0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
2x,x<2
x+2,x≥2
,则f(f(1))的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
4x
-
λ
2x-1
+3(-1≤x≤2).
(1)若λ=
3
2
时,求函数f(x)的值域;
(2)若函数f(x)的最小值是1,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
2-x
的定义域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={0,2,4,6},B={x|3<x<7},则A∩B=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,三棱柱ABC-A1B1C1中,AA1=2AB=2AC=2.∠A1AB=∠A1AC=∠BAC=60°,设
AB
=
a
AC
=
b
AA
=
c

(1)试用向量
a
b
c
表示
BC1
,并求|
BC1
|;
(2)在平行四边形BB1C1C内是否存在一点O,使得A1O⊥平面BB1C1C,若不存在,请说明理由;若存在,试确定O点的位置.

查看答案和解析>>

同步练习册答案