【题目】“五一”期间,为了满足广大人民的消费需求,某共享单车公司欲投放一批共享单车,单车总数不超过100辆,现有A,B两种型号的单车:其中A型车为运动型,成本为400元辆,骑行半小时需花费元;B型车为轻便型,成本为2400元辆,骑行半小时需花费1元若公司投入成本资金不能超过8万元,且投入的车辆平均每车每天会被骑行2次,每次不超过半小时不足半小时按半小时计算,问公司如何投放两种型号的单车才能使每天获得的总收入最多,最多为多少元?
科目:高中数学 来源: 题型:
【题目】将正整数1,2,3,,n,排成数表如表所示,即第一行3个数,第二行6个数,且后一行比前一行多3个数,若第i行,第j列的数可用表示,则100可表示为______.
第1列 | 第2列 | 第3列 | 第4列 | 第5列 | 第6列 | 第7列 | 第8列 | ||
第1行 | 1 | 2 | 3 | ||||||
第2行 | 9 | 8 | 7 | 6 | 5 | 4 | |||
第3行 | 10/p> | 11 | 12 | 13 | 14 | 15 | 16 | 17 | |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,对于直线和点、,记,若,则称点,被直线l分隔,若曲线C与直线l没有公共点,且曲线C上存在点,被直线l分隔,则称直线l为曲线C的一条分隔线.
(1)求证:点、被直线分隔;
(2)若直线是曲线的分隔线,求实数的取值范围;
(3)动点M到点的距离与到y轴的距离之积为1,设点M的轨迹为E,求E的方程,并证明y轴为曲线E的分隔线.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:()的左、右焦点分别为,过点的直线交于,两点,的周长为, 的离心率
(Ⅰ)求的方程;
(Ⅱ)设点,,过点作轴的垂线,试判断直线与直线的交点是否恒在一条定直线上?若是,求该定直线的方程;否则,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知椭圆C:的离心率为,并且椭圆经过点P(1,),直线l的方程为x=4.
(1)求椭圆的方程;
(2)已知椭圆内一点E(1,0),过点E作一条斜率为k的直线与椭圆交于A,B两点,交直线l于点M,记PA,PB,PM的斜率分别为k1,k2,k3.问:是否存在常数,使得k1+k2=k3?若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 f(x)=ax+(1﹣a)lnx+(a∈R)
(Ⅰ)当a=0时,求 f(x)的极值;
(Ⅱ)当a<0时,求 f(x)的单调区间;
(Ⅲ)方程 f(x)=0的根的个数能否达到3,若能请求出此时a的范围,若不能,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com