【题目】如图,圆O与圆P相交于A,B两点,圆心P在圆O上,圆O的弦BC切圆P于点B,CP及其延长线交圆P于D,E两点,过点E作EF⊥CE,交CB的延长线于点F.
(1)求证:B,P,E,F四点共圆;
(2)若CD=2,CB=2 ,求出由B,P,E,F四点所确定的圆的直径.
【答案】(1)见解析(2)
【解析】试题分析:(1)欲证四点B、P、E、F共圆,只要通过三角形Rt△CBP和Rt△CEF相似证明由此四点构成的四边形对角互补即可;
(2)先根据(1)中四点B,P,E,F共圆条件得切线,再由切割线定理及三角形相似求得EF,最后再结合勾股定理求得PF即为所求圆的直径即可.
试题解析:
(1)证明:如图,连接PB.
因为BC切圆P于点B,所以PB⊥BC.
因为EF⊥CE,所以∠PBF+∠PEF=180°,
所以B,P,E,F四点共圆.
(2)连接PF,因为B,P,E,F四点共圆,
且EF⊥CE,PB⊥BC,所以此圆的直径就是PF.
因为BC切圆P于点B,且CD=2,CB=2,
所以由切割线定理得CB2=CD·CE,
所以CE=4,所以DE=2,则BP=PE=1.
又因为Rt△CBP ∽Rt△CEF,
所以=,得EF=.
在Rt△FEP中,PF==,
即由B,P,E,F四点确定的圆的直径为.
科目:高中数学 来源: 题型:
【题目】已知m∈R,复数z= +(m2+2m﹣3)i,当m为何值时,
(1)z∈R;
(2)z是纯虚数;
(3)z对应的点位于复平面第二象限;
(4)(选做)z对应的点在直线x+y+3=0上.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】记所有非零向量构成的集合为V,对于 , ∈V, ≠ ,定义V( , )=|x∈V|x =x |
(1)请你任意写出两个平面向量 , ,并写出集合V( , )中的三个元素;
(2)请根据你在(1)中写出的三个元素,猜想集合V( , )中元素的关系,并试着给出证明;
(3)若V( , )=V( , ),其中 ≠ ,求证:一定存在实数λ1 , λ2 , 且λ1+λ2=1,使得 =λ1 +λ2 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知直线与曲线在第一象限和第三象限分别交于点和点,分别由点、向轴作垂线,垂足分别为、,记四边形的面积为S.
⑴ 求出点、的坐标及实数的取值范围;
⑵ 当取何值时,S取得最小值,并求出S的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对某电子元件进行寿命追踪调查,情况如下.
寿命(h) | 100~200 | 200~300 | 300~400 | 400~500 | 500~600 |
个 数 | 20 | 30 | 80 | 40 | 30 |
(1)列出频率分布表;
(2)画出频率分布直方图;
(3)估计元件寿命在100~400h以内的在总体中占的比例.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)=sin2x+2 cos2x﹣ ,函数g(x)=mcos(2x﹣ )﹣2m+3(m>0),若存在x1 , x2∈[0, ],使得f(x1)=g(x2)成立,则实数m的取值范围是( )
A.(0,1]
B.[1,2]
C.[ ,2]
D.[ , ]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在某次数学测验中,有6位同学的平均成绩为117分,用表示编号为的同学所得成 绩,6位同学成绩如表,
(1)求及这6位同学成绩的方差;
(2)从这6位同学中随机选出2位同学,则恰有1位同学成绩在区间中的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某厂家举行大型的促销活动,经测算某产品当促销费用为万元时,销售量万件满足(其中, 为正常数),现假定生产量与销售量相等,已知生产该产品万件还需投入成本万元(不含促销费用),产品的销售价格定为万元/万件.
(1)将该产品的利润万元表示为促销费用万元的函数;
(2)促销费用投入多少万元时,厂家的利润最大.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com