精英家教网 > 高中数学 > 题目详情
12.若f(x)=xsinx,则函数f(x)的导函数f′(x)等于(  )
A.1-sinxB.x-sinxC.sinx+xcosxD.cosx-xsinx

分析 求函数的导数,即可得到结论.

解答 解:函数的导数为f′(x)=sinx+x•cosx,
故选:C

点评 本题主要考查导数的计算,要求熟练掌握常见函数的导数公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.如图,正方形O′A′B′C′的边长为2cm,它是水平放置的一个平面图形的直观图,则原平面图形的周长是(  )cm.
A.12B.16C.$4(1+\sqrt{3})$D.$4(1+\sqrt{2})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在直角梯形ABCD中,AB∥CD,AB⊥BC,AB=2,CD=1,BC=a(a>0),P为线段AD(含端点)上一个动点,设$\overrightarrow{AP}=x\overrightarrow{AD}$,$\overrightarrow{PB}•\overrightarrow{PC}=y$,则得到函数y=f(x).
(Ⅰ)求f(1)的值;
(Ⅱ)对于任意a∈(0,+∞),求函数f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数$f(x)=\left\{\begin{array}{l}{(x-1)^2},x≥0\\{2^x},\;x<0\end{array}\right.$若f(x)在$(a,a+\frac{3}{2})$上既有最大值又有最小值,则实数a的取值范围是(-$\frac{1}{2}$,0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=3x+4x-8的零点在区间[k,k+1](k∈Z)上,则函数g(x)=x-kex的极大值为(  )
A.-3B.0C.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知双曲线$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{{b}^{2}}$=1的右焦点与抛物线x=$\frac{{y}^{2}}{12}$的焦点重合,则该双曲线的焦点到其渐近线的距离为(  )
A.4$\sqrt{2}$B.$\sqrt{5}$C.3D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图所示的几何体中,四边形ABCD是菱形,ADNM是矩形,平面ADNM⊥平面ABCD,∠DAB=$\frac{π}{3}$,AD=4,AM=2,E是AB的中点
(1)求证:平面MDE⊥平面NDC
(2)求三棱锥N-MDC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图,是导数y=f′(x)的图象,则函数y=f(x)的图象是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)是定义在R上的偶函数,且f(-x-1)=f(x-1),当x∈[-1,0]时,f(x)=-x3,则关于x的方程f(x)=|cosπx|在[-$\frac{5}{2}$,$\frac{1}{2}$]上的所有实数解之和为(  )
A.-7B.-6C.-3D.-1

查看答案和解析>>

同步练习册答案