精英家教网 > 高中数学 > 题目详情

【题目】某健康社团为调查居民的运动情况,统计了某小区100名居民平均每天的运动时长(单位:小时)并根据统计数据分为六个小组(所调查的居民平均每天运动时长均在内),得到的频率分布直方图如图所示.

1)求出图中的值,并估计这名居民平均每天运动时长的平均值及中位数(同一组中的每个数据可用该组区间的中点值代替);

2)为了分析出该小区居民平均每天的运动量与职业、年龄等的关系,该社团按小组用分层抽样的方法抽出20名居民进一步调查,试问在时间段内应抽出多少人?

【答案】1,平均值为2.4,中位数2.4 24

【解析】

1)频率分布直方图中各组的频率之和为1,能求出.利用平均值及中位数计算公式即可得出平均值及中位数.

2)先求得时间段的频率,由此能求出时间段内的人数.

1)由

解得.

100名居民运动时长的平均值为

由图可知中位数内,因为

解得.

2)由题知,时间段的频率为

则应抽出.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了庆祝中华人民共和国成立周年,某车间内举行生产比赛,由甲乙两组内各随机选取名技工,在单位时间生产同一种零件,其生产的合格零件数的茎叶图如下:

已知两组所选技工生产的合格零件的平均数均为.

1)分别求出的值;

2)分别求出甲乙两组技工在单位时间内加工的合格零件的方差,并由此估计两组技工的生产水平;

3)若单位时间内生产的合格零件个数不小于平均数的技工即为生产能手,根据以上数据,能否认为该车间50%以上的技工都是生产能手?

(注:方差,其中为数据的平均数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)axx2g(x)xlnaa>1.

(1)求证:函数F(x)f(x)g(x)(0,+∞)上单调递增;

(2)若函数y3有四个零点,求b的取值范围;

(3)若对于任意的x1x2∈[1,1]时,都有|F(x2)F(x1)|≤e22恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数在区间上, 均可为一个三角形的三边长,则称函数三角形函数.已知函数在区间上是三角形函数,则实数的取值范围为( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为自然对数的底数.

)设是函数的导函数,求函数在区间上的最小值;

)若,函数在区间内有零点,求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fxgx)=3elnx+mx的图象有4个不同的交点,则实数m的取值范围是(

A.(﹣3B.(﹣1C.(﹣13D.03

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,直线的方程为2ρcosθ+5ρsinθ80,曲线E的方程为ρ4cosθ

1)以极点O为直角坐标原点,极轴为x轴正半轴建立平面直角坐标系,分别写出直线l与曲线E的直角坐标方程;

2)设直线l与曲线E交于AB两点,点C在曲线E上,求△ABC面积的最大值,并求此时点C的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】fx)=loga1+x+loga3x)(a0a≠1)且f1)=2

1)求a的值及fx)的定义域;

2)求fx)在区间[0,]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

为增强市民的节能环保意识,某市面向全市征召义务宣传志愿者,从符合条件的500名志愿者中随机抽样100名志原者的年龄情况如下表所示.

)频率分布表中的位置应填什么数据?并在答题卡中补全频率分布直方图(如图),再根据频率分布直方图估计这500名志愿者中年龄在岁的人数;

)在抽出的100名志愿者中按年龄再采用分层抽样法抽取20人参加中心广场的宣传活动,从这20人中选取2名志愿者担任主要负责人,记这2名志愿者中年龄低于30的人数为,求的分布列及数学期望.

查看答案和解析>>

同步练习册答案