精英家教网 > 高中数学 > 题目详情
如图,矩形ABCD的对角线AC,BD交于点O,AB=4,AD=3,沿AC把△ACD折起,使二面角D1-AC-B为直二面角,求二面角D1-BC-A的大小.
考点:二面角的平面角及求法
专题:空间角
分析:以点B为坐标原点,平面ABC为xOy平面,BC,BA方向分别为x轴,y轴的正方向,建立空间直角坐标系.利用向量法能求出二面角D1-BC-A的大小.
解答: 解:以点B为坐标原点,平面ABC为xOy平面,
BC,BA方向分别为x轴,y轴的正方向,
建立空间直角坐标系.
则B(0,0,0),C(1,0,0),A(0,2,0).
在矩形ABCD中,作DH⊥AC于H,HM⊥BC于M,HN⊥AB于N,
则H即为D1在平面ABC上的射影.
∵AB=2,AD=1,∴AC=
5
DH
=
2
5
,HN=
1
5
,HM=
8
5

∴D1
1
5
8
5
2
5
5
),
BC
=(1,0,0),
BD1
=(
1
5
8
5
2
5
5
),
设平面D1BC的法向量为
n
=(a,b,c),
n
BC
=a=0
n
BD1
=a+8b+2
5
c=0
,取b=
5
,得
n
=(0,
5
,-4),
又平面ABC的法向量
m
=(0,0,1),
|cos<
m
n
>|=|
-4
5+16
|=
4
21
21

∴二面角D1-BC-A的大小为arccos
4
21
21
点评:本题考查二面角的大小的求法,是档题题,解题时要认真审题,注意向量法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义在R上的奇函数f(x)满足:“对于区间(0,+∞)上的任意a,b,都有f(a+b)>f(b)成立”.
(Ⅰ)求f(0)的值,并指出f(x)在区间(0,+∞)上的单调性;
(Ⅱ)用增函数的定义证明:函数f(x)是(-∞,0)上的增函数;
(Ⅲ)判断f(x)是否为R上的增函数,如果是,请给出证明;如果不是,请举出反例.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知α是第二象限角,且sin(
π
2
)=-
1
3
,则tan2α的值为(  )
A、
4
2
7
B、-
4
2
7
C、
4
2
9
D、-
4
2
9

查看答案和解析>>

科目:高中数学 来源: 题型:

设F1、F2为椭圆
x2
4
+y2=1的左、右焦点,过椭圆中心任作一直线与椭圆交于P,Q两点,当四边形PF1QF2面积最大时,
PF1
PF2
的值等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={-2,0,1,3,5},B={x∈N|-2<x≤4},则A∩B=(  )
A、{1,3}
B、{0,1,3}
C、{-1,0,1,3}
D、{-1,0,1,2,3,4,5}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知有穷数列{an}各项均不相等,将{an}的项从大到小重新排序后相应的项数构成新数列{pn},称{pn}为{an}的“序数列”.例如数列:a1,a2,a3满足a1>a3>a2,则其序数列{pn}为1,3,2.
(1)若x,y∈R+,x+y=2且x≠y,写出数列:1,xy,
x2+y2
2
的序数列并说明理由;
(2)求证:有穷数列{an}的序数列{pn}为等差数列的充要条件是有穷数列{an}为单调数列;
(3)若项数不少于5项的有穷数列{bn}、{cn}的通项公式分别是bn=n•(
3
5
)n
(n∈N*),cn=-n2+tn(n∈N*),且{bn}的序数列与{cn}的序数列相同,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1,F2分别是双曲线
x2
4
-
y2
21
=1的左、右焦点,P为双曲线右支上的任意一点,则
|PF1|2
|PF2| 
的最小值为(  )
A、24B、20C、16D、12

查看答案和解析>>

科目:高中数学 来源: 题型:

经过点P(0,2)作直线l交椭圆
x2
2
+y2=1于A,B两点.
(1)若△AOB的面积是
2
3
,求直线l的方程(其中O为原点).
(2)当△AOB的面积最大时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

根据已知条件完成下列小题:
(1)已知椭圆的焦点在y轴,且a+c=20,a-c=4,求椭圆的标准方程;
(2)已知双曲线的焦点在x轴,焦距是8,离心率e=2,求双曲线的标准方程.

查看答案和解析>>

同步练习册答案