精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的离心率为,四个顶点构成的菱形的面积是4,圆过椭圆的上顶点作圆的两条切线分别与椭圆相交于两点(不同于点),直线的斜率分别为.

(1)求椭圆的方程;

(2)当变化时,①求的值;②试问直线是否过某个定点?若是,求出该定点;若不是,请说明理由.

【答案】(1);(2)见解析.

【解析】试题分析:(1)由题设知, ,又,解得,由此可得求椭圆的方程2,则有,化简得,对于直线,同理有,于是是方程的两实根,故,即可证明结果;②考虑到时, 是椭圆的下顶点, 趋近于椭圆的上顶点,故若过定点,则猜想定点在轴上.

,得,于是有直线的斜率为,直线的方程为,令,得即可证明直线过定点.

试题解析:(1)由题设知, ,又

解得.

故所求椭圆的方程是.

2,则有,化简得

对于直线,同理有

于是是方程的两实根,故.

考虑到时, 是椭圆的下顶点, 趋近于椭圆的上顶点,故若过定点,则猜想定点在轴上.

,得,于是有.

直线的斜率为

直线的方程为

,得

故直线过定点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数为常数)

(1)若,讨论的单调性;

(2)若对任意的,都存在使得不等式成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数f(x)=x2﹣16x+q+3
(1)若函数在区间[﹣1,1]上存在零点,求实数q的取值范围;
(2)问:是否存在常数q(0<q<10),使得当x∈[q,10]时,f(x)的最小值为﹣51?若存在,求出q的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)证明: ,直线都不是曲线的切线;

(2)若,使成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校的平面示意图为如下图五边形区域,其中三角形区域为生活区,四边形区域为教学区, 为学校的主要道路(不考虑宽度). .

(1)求道路的长度;(2)求生活区面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】微信红包是一款可以实现收发红包、查收记录和提现的手机应用.某网络运营商对甲、乙两个品牌各5种型号的手机在相同环境下抢到的红包个数进行统计,得到如下数据:

手机品牌 型号

I

II

III

IV

V

甲品牌(个)

4

3

8

6

12

乙品牌(乙)

5

7

9

4

3

手机品牌 红包个数

非优

合计

甲品牌(个)

乙品牌(个)

合计

(1)如果抢到红包个数超过5个的手机型号为“优”,否则为“非优”,请完成上述2×2列联表,据此判断是否有85%的把握认为抢到的红包个数与手机品牌有关?

(2)如果不考虑其他因素,要从甲品牌的5种型号中选出3种型号的手机进行大规模宣传销售.

①求在型号I被选中的条件下,型号II也被选中的概率;

②以表示选中的手机型号中抢到的红包超过5个的型号种数,求随机变量的分布列及数学期望.

下面临界值表供参考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

参考公式: ,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,四个顶点构成的菱形的面积是4,圆过椭圆的上顶点作圆的两条切线分别与椭圆相交于两点(不同于点),直线的斜率分别为.

(1)求椭圆的方程;

(2)当变化时,①求的值;②试问直线是否过某个定点?若是,求出该定点;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,动点P(x,y)到两条坐标轴的距离之和等于它到点(1,1)的距离,记点P的轨迹为曲线W,给出下列四个结论: ①曲线W关于原点对称;
②曲线W关于直线y=x对称;
③曲线W与x轴非负半轴,y轴非负半轴围成的封闭图形的面积小于
④曲线W上的点到原点距离的最小值为2﹣
其中,所有正确结论的序号是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抛物线y2=2px(p>0)的焦点为F,已知A,B为抛物线上的两个动点,且满足∠AFB=120°,过弦AB的中点M作抛物线准线的垂线MN,垂足为N,则 的最大值为(
A.2
B.
C.1
D.

查看答案和解析>>

同步练习册答案