精英家教网 > 高中数学 > 题目详情

【题目】已知函数的定义域为,且的图像连续不间断,若函数满足:对于给定的实数,存在,使得,则称具有性质.

1)已知函数,判断是否具有性质,并说明理由;

2)求证:任取,函数具有性质

3)已知函数,若具有性质,求的取值范围.

【答案】1)具有,理由见解析;(2)证明见解析;(3

【解析】

1)根据新定义可知,即,代入求即可进行判断;

2)根据条件验证的取值范围即可;

3)考虑两种情况,利用反证法即可求出取值范围.

1具有性质

,令,则

解得,又,所以具有性质

2)任取,令,则

因为,解得,又,所以

时,

,即任取实数都具有性质

3)若,取,则

,所以具有性质

假设存在使得具有性质,即存在,使得

,则

,则,进而

,所以假设不成立,所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知平行于轴的动直线交抛物线 于点,点的焦点.圆心不在轴上的圆与直线 轴都相切,设的轨迹为曲线.

(1)求曲线的方程;

(2)若直线与曲线相切于点,过且垂直于的直线为,直线 分别与轴相交于点 .当线段的长度最小时,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)讨论的单调性;

(Ⅱ)若,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在教材中,我们已研究出如下结论:平面内条直线最多可将平面分成个部分.现探究:空间内个平面最多可将空间分成多少个部分,.设空间内个平面最多可将空间分成个部分.

(1)求的值;

(2)用数学归纳法证明此结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校将甲、乙等6名新招聘的老师分配到4个不同的年级,每个年级至少分配1名教师,且甲、乙两名老师必须分到同一个年级,则不同的分法种数为______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等比数列的前n项和为,且当时,2m的等差中项为实数.

1)求m的值及数列的通项公式;

2)令,是否存在正整数k,使得对任意正整数n均成立?若存在,求出k的最大值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)(12x)m(14x)n (mnN*)的展开式中含x项的系数为36,求展开式中含x2项的系数最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,若过且倾斜角为的直线交两点,满足.

(1)求抛物线的方程;

(2)若上动点,轴上,圆内切于,求面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义域是上的连续函数图像的两个端点为是图像上任意一点,过点作垂直于轴的直线交线段于点(点与点可以重合),我们称的最大值为该函数的曲径,下列定义域是上的函数中,曲径最小的是(

A.B.

C.D.

查看答案和解析>>

同步练习册答案