【题目】已知函数的定义域为,且的图像连续不间断,若函数满足:对于给定的实数且,存在,使得,则称具有性质.
(1)已知函数,判断是否具有性质,并说明理由;
(2)求证:任取,函数,具有性质;
(3)已知函数,,若具有性质,求的取值范围.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知平行于轴的动直线交抛物线: 于点,点为的焦点.圆心不在轴上的圆与直线, , 轴都相切,设的轨迹为曲线.
(1)求曲线的方程;
(2)若直线与曲线相切于点,过且垂直于的直线为,直线, 分别与轴相交于点, .当线段的长度最小时,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在教材中,我们已研究出如下结论:平面内条直线最多可将平面分成个部分.现探究:空间内个平面最多可将空间分成多少个部分,.设空间内个平面最多可将空间分成个部分.
(1)求的值;
(2)用数学归纳法证明此结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校将甲、乙等6名新招聘的老师分配到4个不同的年级,每个年级至少分配1名教师,且甲、乙两名老师必须分到同一个年级,则不同的分法种数为______
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等比数列的前n项和为,且当时,是与2m的等差中项为实数.
(1)求m的值及数列的通项公式;
(2)令,是否存在正整数k,使得对任意正整数n均成立?若存在,求出k的最大值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义域是上的连续函数图像的两个端点为、,是图像上任意一点,过点作垂直于轴的直线交线段于点(点与点可以重合),我们称的最大值为该函数的“曲径”,下列定义域是上的函数中,曲径最小的是( )
A.B.
C.D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com